Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Transl Anim Sci ; 3(4): 1550-1560, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32704918

ABSTRACT

The objective of this study was to identify barley grain characteristics measured by laboratory procedures that could be used to predict barley energy content for finishing beef steers. Twenty-eight different barley genotypes were evaluated including 18 cultivars and 10 experimental lines. Laboratory analysis of barley samples included bulk density, particle size, N, ADF, starch, and ISDMD (in situ DM disappearance after 3 h of ruminal incubation). Animal performance data (BW, DMI, ADG, steer NEm, and NEg requirements) were collected from 26 feedlot experiments conducted in Montana and Idaho during a 10-yr period and were used to estimate barley NEm and NEg content. A total of 80 experimental units were available with each experimental unit being a diet mean from an individual feedlot experiment. Fifty-eight of the 80 experimental units were randomly selected and used in the development data set and the remaining 22 experimental units were used in the validation data set. Forward, backward, and stepwise selection methods were used to identify variables to be included in regression equations for NEm using PROC REG of SAS. Barley samples in the model development data set represented a wide range in concentrations (DM basis): N (1.6% to 2.8%), ISDMD (25.7% to 58.7%), ADF (3.6% to 8.0%), starch (44.1% to 62.4%), particle size (1,100 to 2,814 µm), and bulk density (50.8 to 69.4 kg/hL). The barley grain characteristics of particle size, ISDMD, starch, and ADF were the most important variables in six successful models (R 2 = 0.48 to 0.60; P = 0.001). The six prediction equations gave mean predicted values for NEm ranging from 1.99 to 2.05 Mcal/kg (average 2.04 Mcal/kg; 0.45% CV). The mean actual NEm values from animal performance trials ranged from 1.75 to 2.48 Mcal/kg (average 2.03 Mcal/kg; 6.5% CV). The mean bias or difference in predicted vs. actual values ranged from -0.001 to 0.005 Mcal/kg. Barley NEg values calculated from animal performance ranged from 1.13 to 1.78 Mcal/kg (average 1.39 Mcal/kg; 8.4% CV). Average predicted barley NEm and NEg were 0.02 and 0.01 Mcal/kg less, respectively, than the 2.06 Mcal/kg NEm and 1.40 Mcal/kg NEg reported by NRC. Barley NE can be predicted from simple laboratory procedures which will aid plant breeders developing new feed varieties and nutritionists formulating finishing rations for beef cattle.

6.
Front Vet Sci ; 3: 62, 2016.
Article in English | MEDLINE | ID: mdl-27563646

ABSTRACT

Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35-87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 µmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 µmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation in ruminant methane emissions without adversely affecting fermentative efficiency or risking toxicity to animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...