Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Calcium ; 27(2): 75-86, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10756974

ABSTRACT

Accurate measurement of elevated intracellular calcium levels requires indicators with low calcium affinity and high selectivity. We examined fluorescence spectral properties and ionic specificity of three low-affinity, ratiometric indicators structurally related to Fura-2: mag-Fura-2 (furaptra), Fura-2FF, and BTC. The indicators differed in respect to their excitation wavelengths, affinity for Ca2+ (Kd approximately 20 microM, 6 microM and 12 microM respectively) and selectivity over Mg2+ (Kd approximately 2 mM for mag-Fura-2, > 10 mM for Fura-2FF and BTC). Among the tested indicators, BTC was limited by a modest dynamic range upon Ca2+ binding, susceptibility to photodamage, and sensitivity to alterations in pH. All three indicators bound other metal ions including Zn2+, Cd2+ and Gd3+. Interestingly, only in the case of BTC were spectral differences apparent between Ca2+ and other metal ions. For example, the presence of Zn2+ increased BTC fluorescence 6-fold at the Ca2+ isosbestic point, suggesting that this dye may be used as a fluorescent Zn2+ indicator. Fura-2FF has high specificity, wide dynamic range, and low pH sensitivity, and is an optimal low-affinity Ca2+ indicator for most imaging applications. BTC may be useful if experimental conditions require visible wavelength excitation or sensitivity to other metal ions including Zn2+.


Subject(s)
Calcium/metabolism , Cations/metabolism , Coumarins/metabolism , Fluorescent Dyes/metabolism , Fura-2/metabolism , Glycine/analogs & derivatives , Neurons/metabolism , Animals , Benzothiazoles , Cells, Cultured , Cerebral Cortex/metabolism , Chelating Agents/metabolism , Fura-2/analogs & derivatives , Glycine/metabolism , Hydrogen-Ion Concentration , Mice , Spectrometry, Fluorescence
2.
Cell Calcium ; 24(3): 165-75, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9883271

ABSTRACT

BTC is a low affinity calcium indicator (Kd approximately 7-26 microM) featuring many desirable properties for cellular calcium imaging, including long excitation wavelengths (400/485 nm), low sensitivity to Mg2+, and accuracy of ratiometric measurement [Iatridou H., Foukaraki E., Kuhn M.A., Marcus E.M., Haugland R.P., Katerinopoulos H.E. The development of a new family of intracellular calcium probes. Cell Calcium 1994; 15: 190-198]. To assess the usefulness of this indicator in cultured neurons, we examined properties of BTC and its acetoxymethyl ester, BTC/AM. BTC/AM had substantial calcium-independent fluorescence at all excitation wavelengths. BTC/AM was readily loaded into neurons and was rapidly hydrolysed. There was little dye compartmentalization, as assessed by digitonin lysis, Co2+ quenching of BTC fluorescence and by confocal microscopy. Despite adequate loading, BTC gradually became unresponsive to [Ca2+]i when cultures were examined under routine imaging conditions. This effect was a function of the cumulative fluorescence illumination and could be minimized by attenuating light intensity or duration. Ratio imaging after exposure of neuronal cultures to 1-50 microM ionomycin revealed distinct sensitivity ranges for BTC and Fura-2. BTC reported graded neuronal [Ca2+]i responses to glutamate receptor stimulation with N-methyl-D-aspartate in the range 10-50 microM, whereas Fura-2 did not distinguish between these stimuli. Under appropriate loading and illumination conditions, bath-loaded BTC/AM may be well suited for measurement of moderate to high calcium concentrations in cultured neurons.


Subject(s)
Calcium/analysis , Coloring Agents/chemistry , Coumarins/chemistry , Glycine/analogs & derivatives , Neurons/metabolism , Spectrometry, Fluorescence/methods , Animals , Benzothiazoles , Calcium/metabolism , Coloring Agents/analysis , Coumarins/analysis , Fura-2/analysis , Glycine/analysis , Glycine/chemistry , Indicators and Reagents/analysis , Indicators and Reagents/chemistry , Light , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...