Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 95(24): e3288-e3302, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32943482

ABSTRACT

OBJECTIVE: We sought to characterize C9orf72 expansions in relation to genetic ancestry and age at onset (AAO) and to use these measures to discriminate the behavioral from the language variant syndrome in a large pan-European cohort of frontotemporal lobar degeneration (FTLD) cases. METHODS: We evaluated expansions frequency in the entire cohort (n = 1,396; behavioral variant frontotemporal dementia [bvFTD] [n = 800], primary progressive aphasia [PPA] [n = 495], and FTLD-motor neuron disease [MND] [n = 101]). We then focused on the bvFTD and PPA cases and tested for association between expansion status, syndromes, genetic ancestry, and AAO applying statistical tests comprising Fisher exact tests, analysis of variance with Tukey post hoc tests, and logistic and nonlinear mixed-effects model regressions. RESULTS: We found C9orf72 pathogenic expansions in 4% of all cases (56/1,396). Expansion carriers differently distributed across syndromes: 12/101 FTLD-MND (11.9%), 40/800 bvFTD (5%), and 4/495 PPA (0.8%). While addressing population substructure through principal components analysis (PCA), we defined 2 patients groups with Central/Northern (n = 873) and Southern European (n = 523) ancestry. The proportion of expansion carriers was significantly higher in bvFTD compared to PPA (5% vs 0.8% [p = 2.17 × 10-5; odds ratio (OR) 6.4; confidence interval (CI) 2.31-24.99]), as well as in individuals with Central/Northern European compared to Southern European ancestry (4.4% vs 1.8% [p = 1.1 × 10-2; OR 2.5; CI 1.17-5.99]). Pathogenic expansions and Central/Northern European ancestry independently and inversely correlated with AAO. Our prediction model (based on expansions status, genetic ancestry, and AAO) predicted a diagnosis of bvFTD with 64% accuracy. CONCLUSIONS: Our results indicate correlation between pathogenic C9orf72 expansions, AAO, PCA-based Central/Northern European ancestry, and a diagnosis of bvFTD, implying complex genetic risk architectures differently underpinning the behavioral and language variant syndromes.


Subject(s)
Aphasia, Primary Progressive/genetics , C9orf72 Protein/genetics , Frontotemporal Lobar Degeneration/genetics , Age of Onset , Aged , Aged, 80 and over , Aphasia, Primary Progressive/physiopathology , Cohort Studies , DNA Repeat Expansion , Europe , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Lobar Degeneration/physiopathology , Geography , Humans , Male , Mediterranean Region , Middle Aged , Principal Component Analysis , Scandinavian and Nordic Countries , Syndrome
2.
J Neurol ; 267(8): 2228-2238, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32277260

ABSTRACT

OBJECTIVE: Widespread metabolic changes are seen in neurodegenerative disease and could be used as biomarkers for diagnosis and disease monitoring. They may also reveal disease mechanisms that could be a target for therapy. In this study we looked for blood-based biomarkers in syndromes associated with frontotemporal lobar degeneration. METHODS: Plasma metabolomic profiles were measured from 134 patients with a syndrome associated with frontotemporal lobar degeneration (behavioural variant frontotemporal dementia n = 30, non fluent variant primary progressive aphasia n = 26, progressive supranuclear palsy n = 45, corticobasal syndrome n = 33) and 32 healthy controls. RESULTS: Forty-nine of 842 metabolites were significantly altered in frontotemporal lobar degeneration syndromes (after false-discovery rate correction for multiple comparisons). These were distributed across a wide range of metabolic pathways including amino acids, energy and carbohydrate, cofactor and vitamin, lipid and nucleotide pathways. The metabolomic profile supported classification between frontotemporal lobar degeneration syndromes and controls with high accuracy (88.1-96.6%) while classification accuracy was lower between the frontotemporal lobar degeneration syndromes (72.1-83.3%). One metabolic profile, comprising a range of different pathways, was consistently identified as a feature of each disease versus controls: the degree to which a patient expressed this metabolomic profile was associated with their subsequent survival (hazard ratio 0.74 [0.59-0.93], p = 0.0018). CONCLUSIONS: The metabolic changes in FTLD are promising diagnostic and prognostic biomarkers. Further work is required to replicate these findings, examine longitudinal change, and test their utility in differentiating between FTLD syndromes that are pathologically distinct but phenotypically similar.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Neurodegenerative Diseases , Supranuclear Palsy, Progressive , Humans , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...