Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
CBE Life Sci Educ ; 23(2): es3, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728230

ABSTRACT

Social justice is increasingly being seen as relevant to the science curriculum. We examine the intersection of participatory science, social justice, and higher education in the United States to investigate how instructors can teach about social justice and enhance collaborations to work toward enacting social justice. Participatory science approaches, like those that collect data over large geographic areas, can be particularly useful for teaching students about social justice. Conversely, local-scale approaches that integrate students into community efforts can create powerful collaborations to help facilitate social justice. We suggest a variety of large-scale databases, platforms, and portals that could be used as starting points to address a set of learning objectives about social justice. We also describe local-scale participatory science approaches with a social justice focus, developed through academic and community partnerships. Considerations for implementing participatory science with undergraduates are discussed, including cautions about the necessary time investment, cultural competence, and institutional support. These approaches are not always appropriate but can provide compelling learning experiences in the correct circumstances.


Subject(s)
Curriculum , Science , Social Justice , Students , Science/education , Humans , Teaching , Universities , Technology/education , Community Participation
2.
iScience ; 26(11): 108101, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37876821

ABSTRACT

Climate and land use change are two of the largest drivers of worldwide biodiversity loss, but detecting drivers of insect decline is more complex. Online data sources can elucidate such responses while identifying systematic data gaps. Using a systematic review, we found 119 studies that document bumble bee and butterfly responses to climate change. While bee literature was limited, there is high confidence that species are emerging earlier (∼17 days), mismatching with floral resources (100% of studies), and changing range distributions (-25%). More butterfly literature was available but did not yield consistent responses. Evidence shows earlier emergences (∼5 days), decreasing range distributions (-19%), and population shifts amongst generalist (87% increase) versus specialist (65% decrease) groups. We argue that the effect of changing climates on floral emergence, abundance, and distribution may be more significant than the impact of climate change on biodiversity; however, further research is required, particularly within the Southern Hemisphere.

3.
Front Plant Sci ; 14: 1048609, 2023.
Article in English | MEDLINE | ID: mdl-37180385

ABSTRACT

Although wetlands contain a disproportionately high amount of earth's total soil carbon, many regions are still poorly mapped and with unquantified carbon stocks. The tropical Andes contain a high concentration of wetlands consisting mostly of wet meadows and peatlands, yet their total organic carbon stocks are poorly quantified, as well as the carbon fraction that wet meadows store compared to peatlands. Therefore, our goal was to quantify how soil carbon stocks vary between wet meadows and peatlands for a previously mapped Andean region, Huascarán National Park, Peru. Our secondary goal was to test a rapid peat sampling protocol to facilitate field sampling in remote areas. We sampled soil to calculate carbon stocks of four wetland types: cushion peat, graminoid peat, cushion wet meadow, and graminoid wet meadow. Soil sampling was conducted by using a stratified randomized sampling scheme. Wet meadows were sampled to the mineral boundary using a gouge auger, and we used a combination of full peat cores and a rapid peat sampling procedure to estimate peat carbon stocks. In the lab, soils were processed for bulk density and carbon content, and total carbon stock of each core was calculated. We sampled 63 wet meadows and 42 peatlands. On a per hectare basis, carbon stocks varied strongly between peatlands (avg. 1092 MgC ha-1) and wet meadows (avg. 30 MgC ha-1). Overall, wetlands in Huascarán National Park contain 24.4 Tg of carbon with peatlands storing 97% of the total wetland carbon and wet meadows accounting for 3% of the wetland carbon in the park. In addition, our results show that rapid peat sampling can be an effective method for sampling carbon stocks in peatlands. These data are important for countries developing land use and climate change policies as well as providing a rapid assessment method for wetland carbon stock monitoring programs.

4.
Integr Comp Biol ; 63(1): 128-135, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37204039

ABSTRACT

Public health researchers have long been aware of the importance of defining the human community associated with research on environmental health initiatives. However, the field community's human components where applied ecology research is conducted, e.g. diverse participants and perspectives, are often overlooked in environmental problem solving. We outline a framework for elevating the human dimension in defining the field community in applied ecology research and for teaching diverse undergraduate students the skills needed to address Anthropocene environmental concerns. We promote broadening participation and incorporating cultural and racial perspectives in ecology research planning, implementation, and teaching. We use the environmental research problem of concern to identify the diverse human community groups potentially connected to the problem and guide the strategies for incorporating their perspectives in the proposed research project. Which human community, whether local, ethnic, or visiting public community, affects the resource management strategy, i.e. people protect what they love, can change the outcomes of applied ecological research, as well as promote development of a diverse environmental workforce. Broadening participation and perspectives means that the people asking the research questions are also part of the social ecological community processes who choose which questions to pursue to manage the natural resources of the community. Here, we promote research and teaching practices that consider the long-standing multicultural connections to nature to allow all students to pursue their love of nature and its beauty in a safe, comfortable, and mentoring setting. We integrate current human diversity, equity, and inclusion-focused pedagogical knowledge into the Ecological Society of America-endorsed 4DEE multidimensional curricular framework. We provide a faculty action guide to engage and train diverse students in ecological practices that meet the needs of today's environmental problem-solving workforce.

5.
Bioscience ; 72(3): 276-288, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35241973

ABSTRACT

Citizen science involves the public in science to investigate research questions. Although citizen science facilitates learning in informal educational settings, little is known about its use or effects in postsecondary (college or university) settings. Using a literature review and a survey, we describe how and why citizen science is being used in postsecondary courses, as well as the impacts on student learning. We found that citizen science is used predominantly in biologically related fields, at diverse types of institutions, to improve student engagement and expose students to authentic research. Considerable anecdotal evidence supporting improved student learning from these experiences exists, but little empirical evidence exists to warrant any conclusion. Therefore, there is a need to rigorously assess the relationship between citizen science participation and postsecondary student learning. We highlight considerations for instructors planning to incorporate citizen science and for citizen science projects wanting to facilitate postsecondary use.

6.
Ecol Appl ; 31(6): e02348, 2021 09.
Article in English | MEDLINE | ID: mdl-34181297

ABSTRACT

How do students discover ecology? Answering this question is essential for diversifying the environmental workforce because scientific disciplines, such as ecology, are often not discovered until students enter academia and are exposed to different disciplinary options. Ecology, and many of the environmental sciences, have persistent and alarmingly low numbers of underrepresented minorities (URM; African American, Hispanic American, Native American, and Pacific Islanders), while other science and technology fields have shown progress in diversification. Why does such underrepresentation persist in environmental disciplines? Social factors such as sense of belonging, science identity, implicit biases, and stereotypes all have been explored and are known to influence the participation of URM students in science. The unique role of the field experience in environmental sciences as a "rite of passage" and "authentic" research experience is one important influence on how URM students experience ecology. Interventions using social elements such as belonging and sense of place are demonstrated ways to broaden participation particularly in environmental science fields, yet dramatic underrepresentation still persists. Here we review known factors affecting and enhancing the recruitment and retention of URMs in the sciences and focus on comprehensive strategies shown to be effective recruiting URM students into the environmental workforce.


Subject(s)
Minority Groups , Students , Humans
7.
Trends Ecol Evol ; 36(4): 269-273, 2021 04.
Article in English | MEDLINE | ID: mdl-33483170

ABSTRACT

Ecological research includes social-ecological-evolutionary processes, but the intersectionality and feedbacks between ecology and environmental justice (EJ) remain low. We here present opportunities for ecological research contributions to EJ. Ultimately, such work can reduce racial and social disparities in environmental provisioning and improve global environmental sustainability.

8.
Ecol Appl ; 30(8): e02250, 2020 12.
Article in English | MEDLINE | ID: mdl-33170978

ABSTRACT

Environmental injustice can be expressed through lack of access to resources, unequal exposure to toxins, and limited access to knowledge about the unsustainable environmental practices that impact communities (Bullard 2018). The ecological processes that contribute to the "perfect storm" of conditions that create environmental injustices are well documented in applied ecology scholarship; yet the human dimension or the co-production of research on those impacts seem to fall into the range of "somebody else's problem." In a literature review of the last 15 years of research published in the Ecological Society of America's family of journals, we explored the intersections of environmental processes and social justice issues, searching for themes, gaps, and opportunities. The resultant is a collection of articles on environmental justice topics that includes issues on access to resources and unequal exposure to environmental hazards and pollutants. This collection highlights gaps in the integration of natural science with social justice topics along with the need for stronger integration of interdisciplinary knowledge that is co-produced with community stakeholders and researchers to build a robust interdisciplinary field of climate justice and global environmental sustainability.


Subject(s)
Environmental Pollutants , Social Justice , Ecology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...