Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 23(16): 4705-12, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23810497

ABSTRACT

Piperidine ether and aryl piperazine hydantoins are reported as potent inhibitors of MMP13. A medicinal chemistry campaign focused on replacing the reverse hydroxamate zinc binding group associated with historical inhibitors with a hydantoin zinc binding group then optimising MMP13 potency, solubility and DMPK properties whilst maintaining good selectivity over MMP14. A number of high quality candidates were progressed and following rat and dog safety evaluation, AZD6605 (3m) was identified as a candidate drug.


Subject(s)
Drug Discovery , Hydantoins/chemical synthesis , Hydantoins/pharmacology , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase Inhibitors/chemical synthesis , Matrix Metalloproteinase Inhibitors/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Animals , Catalytic Domain , Crystallography, X-Ray , Dogs , Enzyme Activation/drug effects , Hydantoins/chemistry , Inhibitory Concentration 50 , Matrix Metalloproteinase Inhibitors/chemistry , Models, Molecular , Rats , Solubility , Sulfonamides/chemistry
2.
J Med Chem ; 55(20): 8827-37, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22984809

ABSTRACT

Rational structure-based design has yielded highly potent inhibitors of cathepsin K (Cat K) with excellent physical properties, selectivity profiles, and pharmacokinetics. Compounds with a 3,4-(CH3O)2Ph motif, such as 31, were found to have excellent metabolic stability and absorption profiles. Through metabolite identification studies, a reactive metabolite risk was identified with this motif. Subsequent structure-based design of isoteres culminated in the discovery of an optimized and balanced inhibitor (indazole, 38).


Subject(s)
Cathepsin K/antagonists & inhibitors , Cyclohexanes/chemical synthesis , Indazoles/chemical synthesis , Animals , Blood Proteins/metabolism , Cells, Cultured , Cyclohexanes/pharmacokinetics , Cyclohexanes/pharmacology , Drug Design , Hepatocytes/metabolism , Humans , Indazoles/pharmacokinetics , Indazoles/pharmacology , Male , Models, Molecular , Protein Binding , Rats , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 22(17): 5563-8, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22858142

ABSTRACT

The discovery of nitrile compound 4, a potent inhibitor of Cathepsin K (Cat K) with good bioavailability in dog is described. The compound was used to demonstrate target engagement and inhibition of Cat K in an in vivo dog PD model. The margin to hERG ion channel inhibition was deemed too low for a clinical candidate and an optimisation program to find isosteres or substitutions on benzothiazole group led to the discovery of 20, 24 and 27; all three free from hERG inhibition.


Subject(s)
Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Cathepsin K/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Nitriles/chemistry , Nitriles/pharmacology , Animals , Benzothiazoles/metabolism , Benzothiazoles/pharmacokinetics , Cathepsin K/metabolism , Dogs , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Microsomes, Liver/metabolism , Models, Molecular , Nitriles/metabolism , Nitriles/pharmacokinetics , Rats , Structure-Activity Relationship
4.
J Med Chem ; 55(14): 6363-74, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22742641

ABSTRACT

Directed screening of nitrile compounds revealed 3 as a highly potent cathepsin K inhibitor but with cathepsin S activity and very poor stability to microsomes. Synthesis of compounds with reduced molecular complexity, such as 7, revealed key SAR and demonstrated that baseline physical properties and in vitro stability were in fact excellent for this series. The tricycle carboline P3 unit was discovered by hypothesis-based design using existing structural information. Optimization using small substituents, knowledge from matched molecular pairs, and control of lipophilicity yielded compounds very close to the desired profile, of which 34 (AZD4996) was selected on the basis of pharmacokinetic profile.


Subject(s)
Carbolines/pharmacology , Cathepsin K/antagonists & inhibitors , Indoles/pharmacology , Osteoarthritis/drug therapy , Protease Inhibitors/pharmacology , Animals , Carbolines/metabolism , Carbolines/pharmacokinetics , Carbolines/therapeutic use , Cathepsin K/chemistry , Dogs , Humans , Indoles/metabolism , Indoles/pharmacokinetics , Indoles/therapeutic use , Inhibitory Concentration 50 , Male , Models, Molecular , Osteoarthritis/enzymology , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/therapeutic use , Protein Conformation , Rats , Substrate Specificity
5.
Int J Exp Pathol ; 90(2): 174-81, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19335556

ABSTRACT

The objective was to assess the effect of doxycycline treatment on a magnetic resonance imaging (MRI) biomarker of cartilage volume loss, and on matrix metalloproteinase (MMP) activity in a guinea pig osteoarthritis model. Guinea pigs (9 months old) were dosed with vehicle or doxycycline, 0.6, 3.0 mg/kg/day for 66 days. Fat-suppressed 3D gradient-echo MRI of the left knee was acquired pre- and post dosing. Change in medial tibial plateau (MTP) cartilage volume (MT.VC) was determined using image analysis. At termination, MTP cartilage was removed from knees and proteolytic MMP activity determined using a fluorescent peptide substrate assay. Vehicle-treated animals lost 20.5% (95% CI mean 25.6-15.1) MT.VC. The doxycycline (0.6 mg/kg/day) group lost 8.6% (P < 0.05, 95% CI 20.6 to -5.3) whilst the 3.0 mg/kg/day group lost 10.0% (P < 0.05, 95% CI 13.9-6.0%). Endogenous levels of active MMPs were below limits of detection in all samples. However, doxycycline treatment ablated amino phenyl mercuric acid activated MMP-13 and MMP-8 levels, reduced MMP-9 levels by 65% and MMP-1 levels by 24%. Doxycycline treatment resulted in partial protection from MT.VC loss and was associated with complete reduction in MMP-13 and MMP-8, and partial reduction in MMP-9 activity. These data imply a role of MMPs in cartilage degeneration but incomplete protection suggests that additional doxycycline insensitive mechanisms are important in this model. The protective effect of doxycycline correlates with the clinical finding of lessened joint space narrowing, strengthens the utility of this animal model in identifying disease-modifying osteoarthritic drugs and supports the use of MRI biomarkers of cartilage loss.


Subject(s)
Arthritis, Experimental/drug therapy , Cartilage, Articular/pathology , Doxycycline/therapeutic use , Osteoarthritis/drug therapy , Tibia/pathology , Animals , Arthritis, Experimental/enzymology , Arthritis, Experimental/pathology , Cartilage, Articular/enzymology , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Guinea Pigs , Magnetic Resonance Imaging/methods , Male , Matrix Metalloproteinases/metabolism , Osteoarthritis/enzymology , Osteoarthritis/pathology
6.
Int J Exp Pathol ; 85(2): 85-96, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15154914

ABSTRACT

The role of cathepsin L in normal physiological processes was assessed using cathepsin L homozygous knockout mice (B6;129-Ctsl(tm1Alpk)). These mice were generated using gene targeting in embryonic stem cells. Null mice fail to express mRNA and protein to cathepsin L. They developed normally and were fertile. The distinct phenotypic change exhibited was a progressive hair loss, culminating in extensive alopecia by 9 months of age. Histological analysis of the skin from homozygous mice revealed diffuse epithelial hyperplasia, hypotrichosis, hair shaft fragmentation and utricle formation. These findings provide evidence that cathepsin L is involved in the regulation of epithelial cell proliferation and differentiation in the skin. In addition, the role of cathepsin L in bone remodelling was evaluated. Using bone histomorphometric measurements, trabecular, but not cortical, bone volume was found to be significantly decreased in the cathepsin L heterozygote and homozygote mice compared to the wild-type mice. Following ovariectomy, it was observed that loss of trabecular bone, the most metabolically active component of bone, occurred to a lesser extent in homozygote, and heterozygote mice, than was seen in wild-type mice. These observations suggest that cathepsin L is likely to have a role in controlling bone turnover during normal development and in pathological states.


Subject(s)
Bone and Bones/pathology , Cathepsins/deficiency , Osteoporosis/pathology , Skin/pathology , Animals , Cathepsin B/analysis , Cathepsin L , Cathepsins/analysis , Cathepsins/genetics , Cell Differentiation , Cysteine Endopeptidases , Female , Gene Deletion , Hair/pathology , Heterozygote , Homozygote , Isoelectric Focusing , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoporosis/genetics , Osteoporosis/surgery , Ovariectomy
SELECTION OF CITATIONS
SEARCH DETAIL
...