Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 730344, 2021.
Article in English | MEDLINE | ID: mdl-34777279

ABSTRACT

Biofilms are endemic in drinking water distribution systems (DWDS), forming on all water and infrastructure interfaces. They can pose risks to water quality and hence consumers. Our understanding of these biofilms is limited, in a large part due to difficulties in sampling them without unacceptable disruption. A novel, non-destructive and non-disruptive biofilm monitoring device (BMD), which includes use of flow cytometry analysis, was developed to assess biofouling rates. Laboratory based experiments established optimal configurations and verified reliable cell enumeration. Deployment at three operational field sites validated assessment of different biofouling rates. These differences in fouling rates were not obvious from bulk water sampling and analysis, but did have a strong correlation with long-term performance data of the associated networks. The device offers the potential to assess DWDS performance in a few months, compared to the number of years required to infer findings from historical customer contact data. Such information is vital to improve the management of our vast, complex and uncertain drinking water supply systems; for example rapidly quantifying the benefits of improvements in water treatment works or changes to maintenance of the network.

2.
Water Res ; 198: 117147, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33962239

ABSTRACT

A new conceptual model to describe and understand the role of assimilable organic carbon (AOC) within drinking water distribution systems is proposed. The impact of AOC on both drinking water biofilm and water quality was studied using bespoke pipe loop experimental facilities installed at three carefully selected operational water treatment works. Integrated physical, chemical and biological monitoring was undertaken that highlights the central role of biofilms in AOC cycling, forming the basis of the new conceptual model. Biofilms formed under high AOC conditions were found to pose the highest discoloration response, generating a turbidity (4.3 NTU) and iron (241.5 µg/l) response sufficient to have caused regulatory failures from only 20 m of pipe in only 12 months of operation. This new knowledge of the role of biofilms in AOC cycling, and ultimately impacts on water quality, can be used to inform management and help ensure the supply of high-quality, biostable drinking water.


Subject(s)
Drinking Water , Water Purification , Biofilms , Carbon/analysis , Water Microbiology , Water Supply
3.
PLoS One ; 14(12): e0225477, 2019.
Article in English | MEDLINE | ID: mdl-31809502

ABSTRACT

Assimilable organic carbon (AOC) is known to correlate with microbial growth, which can consequently degrade drinking water quality. Despite this, there is no standardised AOC test that can be applied to drinking water distribution systems (DWDS). Herein we report the development of a quick, robust AOC that incorporates known strains Pseudomonas fluorescens strain P-17 and Spirillum strain NOX, a higher inoculum volume and enumeration using flow cytometry to generate a quicker (total test time reduced from 14 to 8 days), robust method. We apply the developed AOC test to twenty drinking water treatment works (WTW) to validate the method reproducibility and resolution across a wide range of AOC concentrations. Subsequently, AOC was quantified at 32 sample points, over four DWDS, for a year in order to identify sinks and sources of AOC in operative networks. Application of the developed AOC protocol provided a previously unavailable insight and novel evidence of pipes and service reservoirs exhibiting different AOC and regrowth behaviour. Observed correlations between AOC and microbial growth highlight the importance of monitoring AOC as an integral part of managing drinking water quality at the consumers tap.


Subject(s)
Carbon/analysis , Drinking Water/standards , Organic Chemicals/analysis , Water Microbiology/standards , Water Quality/standards , Carbon/metabolism , Drinking Water/chemistry , Drinking Water/microbiology , Flow Cytometry/methods , Organic Chemicals/metabolism , Pseudomonas fluorescens/metabolism , Reproducibility of Results , Spirillum/metabolism , Water Purification
4.
Front Microbiol ; 9: 2519, 2018.
Article in English | MEDLINE | ID: mdl-30459730

ABSTRACT

Biofilms are the dominant form of microbial loading (and organic material) within drinking water distribution systems (DWDS), yet our understanding of DWDS microbiomes is focused on the more easily accessible bulk-water. Disinfectant residuals are commonly provided to manage planktonic microbial activity in DWDS to safeguard water quality and public health, yet the impacts on the biofilm microbiome are largely unknown. We report results from a full-scale DWDS facility used to develop biofilms naturally, under one of three chlorine concentrations: Low, Medium, or High. Increasing the chlorine concentration reduced the bacterial concentration within the biofilms but quantities of fungi were unaffected. The chlorine regime was influential in shaping the community structure and composition of both taxa. There were microbial members common to all biofilms but the abundance of these varied such that at the end of the Growth phase the communities from each regime were distinct. Alpha-, Beta-, and Gamma-proteobacteria were the most abundant bacterial classes; Sordariomycetes, Leotiomycetes, and Microbotryomycetes were the most abundant classes of fungi. Mechanical cleaning was shown to immediately reduce the bacterial and fungal concentrations, followed by a lag effect on the microbiome with continued decreases in quantity and ecological indices after cleaning. However, an established community remained, which recovered such that the microbial compositions at the end of the Re-growth and initial Growth phases were similar. Interestingly, the High-chlorine biofilms showed a significant elevation in bacterial concentrations at the end of the Re-growth (after cleaning) compared the initial Growth, unlike the other regimes. This suggests adaptation to a form a resilient biofilm with potentially equal or greater risks to water quality as the other regimes. Overall, this study provides critical insights into the interaction between chlorine and the microbiome of DWDS biofilms representative of real networks, implications are made for the operation and maintenance of DWDS disinfectant and cleaning strategies.

5.
PLoS One ; 10(2): e0115824, 2015.
Article in English | MEDLINE | ID: mdl-25706303

ABSTRACT

Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.


Subject(s)
Biofilms/growth & development , Drinking Water/microbiology , Models, Theoretical , Water Microbiology , Water Quality , Water Supply
6.
Water Res ; 65: 134-56, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25105587

ABSTRACT

The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects.


Subject(s)
Drinking Water/microbiology , Microbiological Techniques/methods , Water Supply , Biofilms/growth & development , Microbiota
7.
Appl Microbiol Biotechnol ; 87(2): 749-56, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20300747

ABSTRACT

This study presents a new coupon sampling device that can be inserted directly into the pipes within water distribution systems (WDS), maintaining representative near wall pipe flow conditions and enabling simultaneous microscopy and DNA-based analysis of biofilms formed in situ. To evaluate this sampling device, fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analyses were used to investigate changes in biofilms on replicate coupons within a non-sterile pilot-scale WDS. FISH analysis demonstrated increases in bacterial biofilm coverage of the coupon surface over time, while the DGGE analysis showed the development of increasingly complex biofilm communities, with time-specific clustering of these communities. This coupon design offers improvements over existing biofilm sampling devices in that it enables simultaneous quantitative and qualitative compositional characterization of biofilm assemblages formed within a WDS, while importantly maintaining fully representative near wall pipe flow conditions. Hence, it provides a practical approach that can be used to capture the interactions between biofilm formation and changing abiotic conditions, boundary shear stress, and turbulent driven exchange within WDS.


Subject(s)
Bacteria/isolation & purification , Biofilms , Equipment Design , Genetic Techniques/instrumentation , Microscopy/instrumentation , Water Microbiology , Water Supply/analysis , Bacteria/cytology , Bacteria/genetics , Bacterial Physiological Phenomena , DNA, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...