Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34400501

ABSTRACT

Genebanks collect and preserve vast collections of plants and detailed passport information, with the aim of preserving genetic diversity for conservation and breeding. Genetic characterization of such collections has the potential to elucidate the genetic histories of important crops, use marker-trait associations to identify loci controlling traits of interest, search for loci undergoing selection, and contribute to genebank management by identifying taxonomic misassignments and duplicates. We conducted a genomic scan with genotyping by sequencing (GBS) derived single nucleotide polymorphisms (SNPs) of 10,038 pepper (Capsicum spp.) accessions from worldwide genebanks and investigated the recent history of this iconic staple. Genomic data detected up to 1,618 duplicate accessions within and between genebanks and showed that taxonomic ambiguity and misclassification often involve interspecific hybrids that are difficult to classify morphologically. We deeply interrogated the genetic diversity of the commonly consumed Capsicum annuum to investigate its history, finding that the kinds of peppers collected in broad regions across the globe overlap considerably. The method ReMIXTURE-using genetic data to quantify the similarity between the complement of peppers from a focal region and those from other regions-was developed to supplement traditional population genetic analyses. The results reflect a vision of pepper as a highly desirable and tradable cultural commodity, spreading rapidly throughout the globe along major maritime and terrestrial trade routes. Marker associations and possible selective sweeps affecting traits such as pungency were observed, and these traits were shown to be distributed nonuniformly across the globe, suggesting that human preferences exerted a primary influence over domesticated pepper genetic structure.


Subject(s)
Capsicum/genetics , Chromosomes, Plant/genetics , Genetics, Population , Genome, Plant , Plant Breeding , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Capsicum/growth & development , Genomics
2.
Theor Appl Genet ; 117(8): 1303-12, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18712340

ABSTRACT

Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F(2) and BC(1) populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F(2,) BC(1) and F(2) of BC(3) generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.


Subject(s)
Chromosome Mapping , Genetic Markers , Plant Diseases/genetics , Solanum melongena/genetics , Chromosomes, Plant , DNA Primers , DNA, Plant/genetics , Fusarium/pathogenicity , Immunity, Innate , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA , Solanum melongena/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...