Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nature ; 604(7906): 541-545, 2022 04.
Article in English | MEDLINE | ID: mdl-35388215

ABSTRACT

Fidaxomicin (Fdx) is widely used to treat Clostridioides difficile (Cdiff) infections, but the molecular basis of its narrow-spectrum activity in the human gut microbiome remains unknown. Cdiff infections are a leading cause of nosocomial deaths1. Fidaxomicin, which inhibits RNA polymerase, targets Cdiff with minimal effects on gut commensals, reducing recurrence of Cdiff infection2,3. Here we present the cryo-electron microscopy structure of Cdiff RNA polymerase in complex with fidaxomicin and identify a crucial fidaxomicin-binding determinant of Cdiff RNA polymerase that is absent in most gut microbiota such as Proteobacteria and Bacteroidetes. By combining structural, biochemical, genetic and bioinformatic analyses, we establish that a single residue in Cdiff RNA polymerase is a sensitizing element for fidaxomicin narrow-spectrum activity. Our results provide a blueprint for targeted drug design against an important human pathogen.


Subject(s)
Clostridioides difficile , Clostridium Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clostridioides , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Cryoelectron Microscopy , DNA-Directed RNA Polymerases , Fidaxomicin/chemistry , Fidaxomicin/pharmacology , Fidaxomicin/therapeutic use , Humans
2.
Nat Rev Microbiol ; 19(2): 95-109, 2021 02.
Article in English | MEDLINE | ID: mdl-33122819

ABSTRACT

Transcription of DNA is a fundamental process in all cellular organisms. The enzyme responsible for transcription, RNA polymerase, is conserved in general architecture and catalytic function across the three domains of life. Diverse mechanisms are used among and within the different branches to regulate transcription initiation. Mechanistic studies of transcription initiation in bacteria are especially amenable because the promoter recognition and melting steps are much less complicated than in eukaryotes or archaea. Also, bacteria have critical roles in human health as pathogens and commensals, and the bacterial RNA polymerase is a proven target for antibiotics. Recent biophysical studies of RNA polymerases and their inhibition, as well as transcription initiation and transcription factors, have detailed the mechanisms of transcription initiation in phylogenetically diverse bacteria, inspiring this Review to examine unifying and diverse themes in this process.


Subject(s)
Archaea/genetics , Bacteria/genetics , DNA-Directed RNA Polymerases/metabolism , Transcription Initiation, Genetic/physiology , Anti-Bacterial Agents/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Promoter Regions, Genetic/genetics , RNA, Bacterial/genetics , Sigma Factor/metabolism
3.
Proc Natl Acad Sci U S A ; 117(48): 30423-30432, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199626

ABSTRACT

Rifampicin (Rif) is a first-line therapeutic used to treat the infectious disease tuberculosis (TB), which is caused by the pathogen Mycobacterium tuberculosis (Mtb). The emergence of Rif-resistant (RifR) Mtb presents a need for new antibiotics. Rif targets the enzyme RNA polymerase (RNAP). Sorangicin A (Sor) is an unrelated inhibitor that binds in the Rif-binding pocket of RNAP. Sor inhibits a subset of RifR RNAPs, including the most prevalent clinical RifR RNAP substitution found in Mtb infected patients (S456>L of the ß subunit). Here, we present structural and biochemical data demonstrating that Sor inhibits the wild-type Mtb RNAP by a similar mechanism as Rif: by preventing the translocation of very short RNAs. By contrast, Sor inhibits the RifR S456L enzyme at an earlier step, preventing the transition of a partially unwound promoter DNA intermediate to the fully opened DNA and blocking the template-strand DNA from reaching the active site in the RNAP catalytic center. By defining template-strand blocking as a mechanism for inhibition, we provide a mechanistic drug target in RNAP. Our finding that Sor inhibits the wild-type and mutant RNAPs through different mechanisms prompts future considerations for designing antibiotics against resistant targets. Also, we show that Sor has a better pharmacokinetic profile than Rif, making it a suitable starting molecule to design drugs to be used for the treatment of TB patients with comorbidities who require multiple medications.


Subject(s)
Aminoglycosides/pharmacology , Antibiotics, Antitubercular/pharmacology , DNA-Directed RNA Polymerases/metabolism , Drug Resistance, Bacterial/drug effects , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/physiology , Promoter Regions, Genetic , Aminoglycosides/chemistry , Antibiotics, Antitubercular/chemistry , Binding Sites , Humans , Models, Molecular , Molecular Conformation , Protein Binding , Rifampin/pharmacology , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/microbiology
4.
Transcription ; 11(2): 53-65, 2020 04.
Article in English | MEDLINE | ID: mdl-31880185

ABSTRACT

Recent biophysical studies of mycobacterial transcription have shed new light on this fundamental process in a group of bacteria that includes deadly pathogens such as Mycobacterium tuberculosis (Mtb), Mycobacterium abscessus (Mab), Mycobacterium leprae (Mlp), as well as the nonpathogenic Mycobacterium smegmatis (Msm). Most of the research has focused on Mtb, the causative agent of tuberculosis (TB), which remains one of the top ten causes of death globally. The enzyme RNA polymerase (RNAP) is responsible for all bacterial transcription and is a target for one of the crucial antibiotics used for TB treatment, rifampicin (Rif). Here, we summarize recent biophysical studies of mycobacterial RNAP that have advanced our understanding of the basic process of transcription, have revealed novel paradigms for regulation, and thus have provided critical information required for developing new antibiotics against this deadly disease.


Subject(s)
Mycobacterium/genetics , Transcription, Genetic/genetics , Mycobacterium/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Tuberculosis/microbiology
5.
Nature ; 565(7739): 382-385, 2019 01.
Article in English | MEDLINE | ID: mdl-30626968

ABSTRACT

A key regulated step of transcription is promoter melting by RNA polymerase (RNAP) to form the open promoter complex1-3. To generate the open complex, the conserved catalytic core of the RNAP combines with initiation factors to locate promoter DNA, unwind 12-14 base pairs of the DNA duplex and load the template-strand DNA into the RNAP active site. Formation of the open complex is a multi-step process during which transient intermediates of unknown structure are formed4-6. Here we present cryo-electron microscopy structures of bacterial RNAP-promoter DNA complexes, including structures of partially melted intermediates. The structures show that late steps of promoter melting occur within the RNAP cleft, delineate key roles for fork-loop 2 and switch 2-universal structural features of RNAP-in restricting access of DNA to the RNAP active site, and explain why clamp opening is required to allow entry of single-stranded template DNA into the active site. The key roles of fork-loop 2 and switch 2 suggest a common mechanism for late steps in promoter DNA opening to enable gene expression across all domains of life.


Subject(s)
Cryoelectron Microscopy , DNA, Bacterial/chemistry , DNA, Bacterial/ultrastructure , DNA-Directed RNA Polymerases/metabolism , Mycobacterium tuberculosis/enzymology , Nucleic Acid Conformation , Promoter Regions, Genetic , Bacterial Proteins/metabolism , Base Sequence , Catalytic Domain , DNA, Bacterial/metabolism , Enzyme Stability/drug effects , Escherichia coli/enzymology , Lactones/pharmacology , Models, Molecular , Mycobacterium tuberculosis/metabolism , Nucleic Acid Denaturation , Protein Binding , Thermodynamics , Transcription Initiation, Genetic/drug effects
6.
Elife ; 72018 02 26.
Article in English | MEDLINE | ID: mdl-29480804

ABSTRACT

Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket.


Subject(s)
Antibiotics, Antitubercular/metabolism , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/chemistry , Enzyme Inhibitors/metabolism , Fidaxomicin/metabolism , Mycobacterium tuberculosis/enzymology , Antibiotics, Antitubercular/chemistry , Cryoelectron Microscopy , Enzyme Inhibitors/chemistry , Fidaxomicin/chemistry , Models, Molecular , Protein Binding , Protein Conformation
7.
PLoS Biol ; 14(5): e1002464, 2016 05.
Article in English | MEDLINE | ID: mdl-27219477

ABSTRACT

In a process called quorum sensing, bacteria communicate with chemical signal molecules called autoinducers to control collective behaviors. In pathogenic vibrios, including Vibrio cholerae, the accumulation of autoinducers triggers repression of genes responsible for virulence factor production and biofilm formation. The vibrio autoinducer molecules bind to transmembrane receptors of the two-component histidine sensor kinase family. Autoinducer binding inactivates the receptors' kinase activities, leading to dephosphorylation and inhibition of the downstream response regulator LuxO. Here, we report the X-ray structure of LuxO in its unphosphorylated, autoinhibited state. Our structure reveals that LuxO, a bacterial enhancer-binding protein of the AAA+ ATPase superfamily, is inhibited by an unprecedented mechanism in which a linker that connects the catalytic and regulatory receiver domains occupies the ATPase active site. The conformational change that accompanies receiver domain phosphorylation likely disrupts this interaction, providing a mechanistic rationale for LuxO activation. We also determined the crystal structure of the LuxO catalytic domain bound to a broad-spectrum inhibitor. The inhibitor binds in the ATPase active site and recapitulates elements of the natural regulatory mechanism. Remarkably, a single inhibitor molecule may be capable of inhibiting an entire LuxO oligomer.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Models, Molecular , Phosphorylation , Protein Domains , Repressor Proteins/antagonists & inhibitors , Uracil/analogs & derivatives , Uracil/pharmacology
9.
J Am Chem Soc ; 132(23): 8029-36, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20297820

ABSTRACT

Remarkably versatile chemistry of Bodipy dyes allows the design and straightforward synthesis of multivalent-multitopic derivatives, which, with judicious selection of metal ion-ligand pairs based on known affinities, affords control and manipulation of photoinduced electron transfer and internal charge transfer processes as desired. We have demonstrated that metal ions acting as modulators (or inputs, in digital design parlance) can generate absorbance changes in accordance with the operation of a half-adder. In addition, an AND logic gate in the emission mode was delivered using a different binucleating arrangement of ligands. A molecular equivalent of a three-input AND logic gate was also obtained exploiting differential binding affinities of metal ions for different ligands. The results suggest that different metal ions can be used as nonannihilating inputs, selectively targeting various ligands incorporated within a single fluorophore, and with careful design, diverse photophysical processes can be selectively modulated, resulting in a range of signals, useful in molecular logic design, and offering an enticing potential for multianalyte chemosensors.

10.
Angew Chem Int Ed Engl ; 48(13): 2339-41, 2009.
Article in English | MEDLINE | ID: mdl-19199314

ABSTRACT

A new pick-up line: The first uranyl-selective DNA-binding protein is designed using the E. coli nickel(II)-responsive protein NikR as the template. The resulting NikR' protein binds uranyl (see picture) with a dissociation constant K(d) = 53 nM and selectively binds to DNA in the presence of uranyl.


Subject(s)
DNA-Binding Proteins/chemistry , Escherichia coli Proteins/chemistry , Repressor Proteins/chemistry , Uranium/chemistry , DNA/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Kinetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Nickel , Protein Engineering , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...