Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BioTech (Basel) ; 12(1)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36975313

ABSTRACT

The tremendous problem with plastic waste accumulation has determined an interest in biodegradation by effective degraders and their enzymes, such as thermophilic enzymes, which are characterized by high catalytic rates, thermostability, and optimum temperatures close to the melting points of some plastics. In the present work, we report on the ability of a thermophilic lipase, by Brevibacillus thermoruber strain 7, to degrade Ɛ-polycaprolactone (PCL), as well as the enzyme purification, the characterization of its physicochemical properties, the product degradation, and its disruptive effect on the PCL surface. The pure enzyme showed the highest reported optimum temperature at 55 °C and a pH of 7.5, while its half-life at 60 °C was more than five hours. Its substrate specificity referred the enzyme to the subgroup of lipases in the esterase group. A strong inhibitory effect was observed by detergents, inhibitors, and Fe3+ while Ca2+ enhanced its activity. The monomer Ɛ-caprolactone was a main product of the enzyme degradation. Similar elution profiles of the products received after treatment with ultra-concentrate and pure enzyme were observed. The significant changes in PCL appearance comprising the formation of shallower or deeper in-folds were observed after a week of incubation. The valuable enzyme properties of the lipase from Brevibacillus thermoruber strain 7, which caused a comparatively quick degradation of PCL, suggests further possible exploration of the enzyme for effective and environment-friendly degradation of PCL wastes in the area of thermal basins, or in thermophilic remediation processes.

2.
Biomolecules ; 11(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34680121

ABSTRACT

The continual plastic accumulation in the environment and the hazardous consequences determine the interest in thermophiles as possible effective plastic degraders, due to their unique metabolic mechanisms and change of plastic properties at elevated temperatures. PCL is one of major biodegradable plastics with promising application to replace existing non-biodegradable polymers. Metagenomic analysis of the phylogenetic diversity in plastic contaminated area of Marikostinovo hot spring, Bulgaria revealed a higher number taxonomic groups (11) in the sample enriched without plastic (Marikostinovo community, control sample, MKC-C) than in that enriched in the presence of poly-ε-caprolactone (PCL) (MKC-P), (7). A strong domination of the phylum Proteobacteria was observed for MKC-C, while the dominant phyla in MKC-P were Deinococcus-Thermus and Firmicutes. Among the strains isolated from MKC-P, the highest esterase activity was registered for Brevibacillus thermoruber strain 7 at 55 °C. Its co-cultivation with another isolate resulted in ~10% increase in enzyme activity. During a 28-day biodegradation process, a decrease in PCL molecular weight and weight loss were established resulting in 100% degradation by MKC-P and 63.6% by strain 7. PCL degradation intermediate profiles for MKC-P and pure strain were similar. Broken plastic pieces from PCL surface and formation of a biofilm by MKC-P were observed by SEM, while the pure strain caused significant deformation of PCL probes without biofilm formation.


Subject(s)
Brevibacillus/isolation & purification , Brevibacillus/metabolism , Hot Springs/microbiology , Polyesters/metabolism , Temperature , Biodegradation, Environmental , Biofilms/growth & development , Bulgaria , Chromatography, Gel , Esterases/metabolism , Phylogeny , Plastics
3.
Microorganisms ; 8(12)2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33291251

ABSTRACT

Several exopolymers with different chemical composition and correspondingly variety in their physico-chemical properties from halophilic microorganisms have still been described, however, with a low production yield. Chromohalobacter canadensis 28 isolated from Pomorie saltern synthesized an unusual exopolymer (EP) containing 72% γ-polyglutamic acid (PGA), an essential cosmeceutical additive. Current work suggests a novel approach for effective EP synthesis by C. canadensis 28 using continuous cultures. Highest production was observed at low dilution rates reaching a level of 2.1 mg/mL at D = 0.035, similar to those in batch cultures (2.34 mg/mL), however avoiding all disadvantages of discontinuous fermentation processes. At steady state, the total quantities of the synthesized EP after 48 h cultivation for the given equipment volume in D = 0.035 h-1 and D = 0.075 h-1 were 8.67 and 12 g, correspondingly, while it was 2.9 g for batch culture. Process parameters did not change after a ten-day run at D = 0.35 h-1. A degree of purity of EP fraction received from continuous cultures was significantly increased up to 93-96%. A lack of cytotoxicity and high cell viability were observed for human dermal fibroblast cells after 24 h incubation with crude EP from C. canadensis 28 and purified PGA fraction that could suggest its high potential for cosmetic applications.

4.
Eng Life Sci ; 20(8): 357-367, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32774208

ABSTRACT

Unusual composition of an exopolymer (EP) from an obligate halophilic bacterium Chromohalobacter canadensis 28 has triggered an interest in development of an effective bioreactor process for its production. Its synthesis was investigated in 2-L bioreactor at agitation speeds at interval 600-1000 rpm, at a constant air flow rate of 0.5 vvm; aeration rates of 0.5, 1.0, and 1.5 vvm were tested at constant agitation rate of 900 rpm. EP production was affected by both, agitation and aeration. As a result twofold increase of EP yield was observed and additionally increased up to 3.08 mg/mL in a presence of surfactants. For effective scale-up of bioreactors mass transfer parameters were estimated and lowest values of KLa obtained for the highest productivity fermentation was established. Emulsification activity of EP exceeded that of trade hydrocolloids xanthan, guar gum, and cellulose. A good synergism between EP and commercial cellulose proved its potential exploration as an enhancer of emulsifying properties of trade emulsions. A pronounced lipophilic effect of EP was established toward olive oil and liquid paraffin. Cultivation of human keratinocyte cells (HaCaT) with crude EP and purified γ-polyglutamic acid (PGA) showed higher viability than control group.

5.
Appl Microbiol Biotechnol ; 102(11): 4937-4949, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29616312

ABSTRACT

Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.


Subject(s)
Chromohalobacter/metabolism , Polymers/metabolism , Biotechnology , Culture Media , Extracellular Space/chemistry , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Polysaccharides, Bacterial/analysis , Polysaccharides, Bacterial/chemistry
6.
Archaea ; 2016: 7459679, 2016.
Article in English | MEDLINE | ID: mdl-27974879

ABSTRACT

Recent studies on archaeal diversity in few salterns have revealed heterogeneity between sites and unique structures of separate places that hinder drawing of generalized conclusions. Investigations on the archaeal community composition in P18, the biggest crystallizer pond in Pomorie salterns (PS) (34% salinity), demonstrated unusually high number of presented taxa in hypersaline environment. Archaeal clones were grouped in 26 different operational taxonomic units (OTUs) assigned to 15 different genera from two orders, Halobacteriales and Haloferacales. All retrieved sequences were related to culturable halophiles or unculturable clones from saline (mostly hypersaline) niches. New sequences represented 53.9% of archaeal OTUs. Some of them formed separate branches with 90% similarity to the closest neighbor. Present results significantly differed from the previous investigations in regard to the number of presented genera, the domination of some genera not reported before in such extreme niche, and the identification of previously undiscovered 16S rRNA sequences.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Biodiversity , Phylogeny , Ponds/microbiology , Archaea/genetics , Bulgaria , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Biotechnol Lett ; 32(12): 1893-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20703805

ABSTRACT

A new, thermostable superoxide dismutase (SOD) from Bacillus licheniformis M20, isolated from Bulgarian mineral springs, was purified 11-fold with 11% recovery of activity. From native PAGE and SDS-PAGE, the enzyme was composed of two subunits of 21.5 kDa each. The SOD was inhibited only by NaN(3), which suggested that this SOD is of the manganese superoxide dismutase type. The purified enzyme had maximum activity at pH 8 and 55°C. The half-life of the SOD was 10 min at 95°C.


Subject(s)
Bacillus/enzymology , Hot Springs/microbiology , Superoxide Dismutase/isolation & purification , Superoxide Dismutase/metabolism , Bacillus/isolation & purification , Bulgaria , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/metabolism , Enzyme Stability , Half-Life , Hot Temperature , Hydrogen-Ion Concentration , Molecular Weight , Protein Subunits/chemistry , Protein Subunits/isolation & purification , Sodium Azide/metabolism , Superoxide Dismutase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...