Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Article in English | MEDLINE | ID: mdl-38427275

ABSTRACT

Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.

2.
Article in English | MEDLINE | ID: mdl-38158521

ABSTRACT

Intercellular communication is a cell-type and stimulus-dependent event driven not only by soluble factors but also by extracellular vesicles (EVs). EVs include vesicles of different size and origin that contain a myriad of molecules. Among them, small EVs (sEV; <200 nm) have been shown to modulate not just regional cell responses but also distant organ behavior. In cancer, distant organ modulation by sEVs has been associated to disease dissemination, which is one of the main concerns in melanoma. Description of broadly conserved alterations in sEV-contained molecules represents a strategy to identify key modifications in cellular communication as well as new disease biomarkers. Here, we characterize proteomes of cutaneous melanocyte and melanoma-derived sEVs to deepen on the landscape of normal and disease-related cell communication. Results reveal the presence of unique protein signatures for melanocytes and melanoma cells that reflect cellular transformation-related profound modifications. Melanocyte-derived sEVs are enriched in oxidative metabolism (e.g., aconitase 2, ACO2) or pigmentation (e.g., tyrosinase, TYR) related proteins while melanoma-derived sEVs reflect a generalized decrease in mature melanocytic markers (e.g., melanoma antigen recognized by T-cells 1, MART-1, also known as MLANA) and an increase in epithelial to mesenchymal transition (EMT)-related adhesion molecules such as tenascin C (TNC).

3.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240369

ABSTRACT

In the last few years, the importance of neoantigens in the development of personalized antitumor vaccines has increased remarkably. In order to study whether bioinformatic tools are effective in detecting neoantigens that generate an immune response, DNA samples from patients with cutaneous melanoma in different stages were obtained, resulting in a total of 6048 potential neoantigens gathered. Thereafter, the immunological responses generated by some of those neoantigens ex vivo were tested, using a vaccine designed by a new optimization approach and encapsulated in nanoparticles. Our bioinformatic analysis indicated that no differences were found between the number of neoantigens and that of non-mutated sequences detected as potential binders by IEDB tools. However, those tools were able to highlight neoantigens over non-mutated peptides in HLA-II recognition (p-value 0.03). However, neither HLA-I binding affinity (p-value 0.08) nor Class I immunogenicity values (p-value 0.96) indicated significant differences for the latter parameters. Subsequently, the new vaccine, using aggregative functions and combinatorial optimization, was designed. The six best neoantigens were selected and formulated into two nanoparticles, with which the immune response ex vivo was evaluated, demonstrating a specific activation of the immune response. This study reinforces the use of bioinformatic tools in vaccine development, as their usefulness is proven both in silico and ex vivo.


Subject(s)
Cancer Vaccines , Melanoma , Neoplasms , Skin Neoplasms , Humans , Antigens, Neoplasm/genetics , Immunity , Vaccine Development , Neoplasms/genetics
4.
Cancers (Basel) ; 15(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37046835

ABSTRACT

This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFß (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.

5.
Life (Basel) ; 13(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676104

ABSTRACT

Background: The main purpose of this article is to introduce a universal mathematics-aided vaccine design method against malignant melanoma based on neoantigens. The universal method can be adapted to the mutanome of each patient so that a specific candidate vaccine can be tailored for the corresponding patient. Methods: We extracted the 1134 most frequent mutations in melanoma, and we associated each of them to a vector with 10 components estimated with different bioinformatics tools, for which we found an aggregated value according to a set of weights, and then we ordered them in decreasing order of the scores. Results: We prepared a universal table of the most frequent mutations in melanoma ordered in decreasing order of viability to be used as candidate vaccines, so that the selection of a set of appropriate peptides for each particular patient can be easily and quickly implemented according to their specific mutanome and transcription profile. Conclusions: We have shown that the techniques that are commonly used for the design of personalized anti-tumor vaccines against malignant melanoma can be adapted for the design of universal rankings of neoantigens that originate personalized vaccines when the mutanome and transcription profile of specific patients is considered, with the consequent savings in time and money, shortening the design and production time.

6.
Life (Basel) ; 12(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892921

ABSTRACT

Mahogunin Ring Finger 1 (MGRN1), a ubiquitin ligase expressed in melanocytes, interacts with the α melanocyte-stimulating hormone receptor, a well-known melanoma susceptibility gene. Previous studies showed that MGRN1 modulates the phenotype of mouse melanocytes and melanoma cells, with effects on pigmentation, shape, and motility. Moreover, MGRN1 knockdown augmented the burden of DNA breaks in mouse cells, indicating that loss of MGRN1 promoted genomic instability. However, data concerning the roles of MGRN1 in human melanoma cells remain scarce. We analyzed MGRN1 knockdown in human melanoma cells. Transient MGRN1 depletion with siRNA or permanent knockdown in human melanoma cells by CRISPR/Cas9 caused an apparently MITF-independent switch to a more dendritic phenotype. Lack of MGRN1 also increased the fraction of human cells in the S phase of the cell cycle and the burden of DNA breaks but did not significantly impair proliferation. Moreover, in silico analysis of publicly available melanoma datasets and estimation of MGRN1 in a cohort of clinical specimens provided preliminary evidence that MGRN1 expression is higher in human melanomas than in normal skin or nevi and pointed to an inverse correlation of MGRN1 expression in human melanoma with patient survival, thus suggesting potential use of MGRN1 as a melanoma biomarker.

7.
Oncol Lett ; 23(5): 140, 2022 May.
Article in English | MEDLINE | ID: mdl-35340556

ABSTRACT

The incidence rates of melanoma have increased steadily in recent decades and nearly 25% of the patients diagnosed with early-stage melanoma will eventually develop metastasis, for which there is currently no fully effective treatment. The link between phospholipases and tumors has been studied extensively, particularly in breast and colon cancers. With the aim of finding new biomarkers and therapeutic options for melanoma, the expression of different phospholipases was assessed in 17 distinct cell lines in the present study, demonstrating that phospholipase D2 (PLD2) is upregulated in metastatic melanoma as compared to normal skin melanocytes. These results were corroborated by immunofluorescence and lipase activity assays. Upregulation of PLD2 expression and increased lipase activity were observed in metastatic melanoma relative to normal skin melanocytes. So far, the implication of PLD2 activity in melanoma malignancies has remained elusive. To the best of our knowledge, the present study was the first to demonstrate that the overexpression of PLD2 enhances lipase activity, and its effect to increase the proliferation, migration and invasion capacity of melanoma cells was assessed with XTT and Transwell assays. In addition, silencing of PLD2 in melanoma cells reduced the metastatic potential of these cells. The present study provided evidence that PLD2 is involved in melanoma malignancy and in particular, in its metastatic potential, and established a basis for future studies evaluating PLD2 blockade as a therapeutic strategy to manage this condition.

8.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769491

ABSTRACT

Melanoma is the deadliest form of skin cancer due to its ability to colonize distant sites and initiate metastasis. Although these processes largely depend on the lipid-based cell membrane scaffold, our understanding of the melanoma lipid phenotype lags behind most other aspects of this tumor cell. Here, we examined a panel of normal human epidermal and nevus melanocytes and primary and metastatic melanoma cell lines to determine whether distinctive cell-intrinsic lipidomes can discern non-neoplastic from neoplastic melanocytes and define their metastatic potential. Lipidome profiles were obtained by UHPLC-ESI mass-spectrometry, and differences in the signatures were analyzed by multivariate statistical analyses. Significant and highly specific changes in more than 30 lipid species were annotated in the initiation of melanoma, whereas less numerous changes were associated with melanoma progression and the non-malignant transformation of nevus melanocytes. Notably, the "malignancy lipid signature" features marked drops in pivotal membrane lipids, like sphingomyelins, and aberrant elevation of ether-type lipids and phosphatidylglycerol and phosphatidylinositol variants, suggesting a previously undefined remodeling of sphingolipid and glycerophospholipid metabolism. Besides broadening the molecular definition of this neoplasm, the different lipid profiles identified may help improve the clinical diagnosis/prognosis and facilitate therapeutic interventions for cutaneous melanoma.


Subject(s)
Biomarkers, Tumor/metabolism , Lipidomics/methods , Lipids/analysis , Melanocytes/metabolism , Melanoma/pathology , Metabolic Networks and Pathways , Skin Neoplasms/pathology , Cell Line , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Computational Biology , Humans , Lipid Metabolism , Mass Spectrometry/methods , Melanoma/metabolism , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
9.
Cancers (Basel) ; 13(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208232

ABSTRACT

Heat shock protein (Hsp) synthesis is upregulated in a wide range of cancers to provide the appropriate environment for tumor progression. The Hsp110 and Hsp70 families have been associated to cancer cell survival and resistance to chemotherapy. In this study, we explore the strategy of drug repurposing to find new Hsp70 and Hsp110 inhibitors that display toxicity against melanoma cancer cells. We found that the hits discovered using Apg2, a human representative of the Hsp110 family, as the initial target bind also to structural regions present in members of the Hsp70 family, and therefore inhibit the remodeling activity of the Hsp70 system. One of these compounds, the spasmolytic agent pinaverium bromide used for functional gastrointestinal disorders, inhibits the intracellular chaperone activity of the Hsp70 system and elicits its cytotoxic activity specifically in two melanoma cell lines by activating apoptosis. Docking and molecular dynamics simulations indicate that this compound interacts with regions located in the nucleotide-binding domain and the linker of the chaperones, modulating their ATPase activity. Thus, repurposing of pinaverium bromide for cancer treatment appears as a promising novel therapeutic approach.

10.
Sci Rep ; 11(1): 3583, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574425

ABSTRACT

Human sperm protein associated with the nucleus on the X chromosome (SPANX) genes encode a protein family (SPANX-A, -B, -C and -D), whose expression is limited to the testis and spermatozoa in normal tissues and various tumour cells. SPANX-A/D proteins have been detected in metastatic melanoma cells, but their contribution to cancer development and the underlying molecular mechanisms of skin tumourigenesis remain unknown. Combining functional and proteomic approaches, the present work describes the presence of SPANX-A/D in primary and metastatic human melanoma cells and how it promotes pro-tumoural processes such as cell proliferation, motility and migration. We provide insights into the molecular features of skin tumourigenesis, describing for the first time a multifunctional role of the SPANX-A/D protein family in nuclear function, energy metabolism and cell survival, considered key hallmarks of cancer. A better comprehension of the SPANX-A/D protein subfamily and its molecular mechanisms will help to describe new aspects of tumour cell biology and develop new therapeutic targets and tumour-directed pharmacological drugs for skin tumours.


Subject(s)
Carcinogenesis/genetics , Melanoma/genetics , Nuclear Proteins/genetics , Proteomics , Amino Acid Sequence/genetics , Cell Nucleus/genetics , Cell Nucleus/pathology , Chromosomes, Human, X/genetics , Humans , Male , Melanoma/pathology , Nuclear Proteins/classification , Sequence Homology, Amino Acid , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/growth & development , Testis/pathology
11.
Mol Oncol ; 14(8): 1705-1718, 2020 08.
Article in English | MEDLINE | ID: mdl-32485045

ABSTRACT

Metastasis development represents an important threat for melanoma patients, even when diagnosed at early stages and upon removal of the primary tumor. In this scenario, determination of prognostic biomarkers would be of great interest. Serum contains information about the general status of the organism and therefore represents a valuable source for biomarkers. Thus, we aimed to define serological biomarkers that could be used along with clinical and histopathological features of the disease to predict metastatic events on the early-stage population of patients. We previously demonstrated that in stage II melanoma patients, serum levels of dermcidin (DCD) were associated with metastatic progression. Based on the relevance of the immune response on the cancer progression and the recent association of DCD with local and systemic immune response against cancer cells, serum DCD was analyzed in a new cohort of patients along with interleukin 4 (IL-4), IL-6, IL-10, IL-17A, interferon γ (IFN-γ), transforming growth factor-ß (TGF- ß), and granulocyte-macrophage colony-stimulating factor (GM-CSF). We initially recruited 448 melanoma patients, 323 of whom were diagnosed as stages I-II according to AJCC. Levels of selected cytokines were determined by ELISA and Luminex, and obtained data were analyzed employing machine learning and Kaplan-Meier techniques to define an algorithm capable of accurately classifying early-stage melanoma patients with a high and low risk of developing metastasis. The results show that in early-stage melanoma patients, serum levels of the cytokines IL-4, GM-CSF, and DCD together with the Breslow thickness are those that best predict melanoma metastasis. Moreover, resulting algorithm represents a new tool to discriminate subjects with good prognosis from those with high risk for a future metastasis.


Subject(s)
Biomarkers, Tumor/blood , Machine Learning , Melanoma/blood , Melanoma/pathology , Cytokines/blood , Female , Humans , Male , Melanoma/diagnosis , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Peptides/blood , Prognosis , ROC Curve
12.
PLoS One ; 15(3): e0230136, 2020.
Article in English | MEDLINE | ID: mdl-32168325

ABSTRACT

Analyzing the mutational load of driver mutations in melanoma could provide valuable information regarding its progression. We aimed at analyzing the heterogeneity of mutational load of BRAF V600E in biopsies of melanoma patients of different stages, and investigating its potential as a prognosis factor. Mutational load of BRAF V600E was analyzed by digital PCR in 78 biopsies of melanoma patients of different stages and 10 nevi. The BRAF V600E load was compared among biopsies of different stages. Results showed a great variability in the load of V600E (0%-81%). Interestingly, we observed a significant difference in the load of V600E between the early and late melanoma stages, in the sense of an inverse correlation between BRAF V600E mutational load and melanoma progression. In addition, a machine learning approach showed that the mutational load of BRAF V600E could be a good predictor of metastasis in stage II patients. Our results suggest that BRAF V600E is a promising biomarker of prognosis in stage II patients.


Subject(s)
Biomarkers, Tumor/genetics , Melanoma , Proto-Oncogene Proteins B-raf/genetics , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis/methods , Female , Humans , Machine Learning , Male , Melanoma/genetics , Melanoma/pathology , Middle Aged , Mutation , Neoplasm Metastasis , Nevus, Pigmented , Prognosis , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
13.
Sci Rep ; 9(1): 16369, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31704992

ABSTRACT

For a wide range of cells, from bacteria to mammals, locomotion movements are a crucial systemic behavior for cellular life. Despite its importance in a plethora of fundamental physiological processes and human pathologies, how unicellular organisms efficiently regulate their locomotion system is an unresolved question. Here, to understand the dynamic characteristics of the locomotion movements and to quantitatively study the role of the nucleus in the migration of Amoeba proteus we have analyzed the movement trajectories of enucleated and non-enucleated amoebas on flat two-dimensional (2D) surfaces using advanced non-linear physical-mathematical tools and computational methods. Our analysis shows that both non-enucleated and enucleated amoebas display the same kind of dynamic migration structure characterized by highly organized data sequences, super-diffusion, non-trivial long-range positive correlations, persistent dynamics with trend-reinforcing behavior, and move-step fluctuations with scale invariant properties. Our results suggest that the presence of the nucleus does not significantly affect the locomotion of amoeba in 2D environments.


Subject(s)
Amoeba/physiology , Cell Nucleus/physiology , Models, Biological , Least-Squares Analysis , Microscopy, Video , Movement/physiology , Nonlinear Dynamics
14.
Nat Commun ; 10(1): 3690, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417086

ABSTRACT

Associative memory is the main type of learning by which complex organisms endowed with evolved nervous systems respond efficiently to certain environmental stimuli. It has been found in different multicellular species, from cephalopods to humans, but never in individual cells. Here we describe a motility pattern consistent with associative conditioned behavior in the microorganism Amoeba proteus. We use a controlled direct-current electric field as the conditioned stimulus, and a specific chemotactic peptide as the unconditioned stimulus. The amoebae are capable of linking two independent past events, generating persistent locomotion movements that can prevail for 44 min on average. We confirm a similar behavior in a related species, Metamoeba leningradensis. Thus, our results indicate that unicellular organisms can modify their behavior during migration by associative conditioning.


Subject(s)
Amoeba/physiology , Association Learning/physiology , Conditioning, Classical/physiology , Locomotion/physiology
16.
ACS Appl Mater Interfaces ; 10(9): 8165-8172, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29390182

ABSTRACT

Disk-shaped magnetic nanostructures present distinctive features for novel biomedical applications. Fine tuning of geometry and dimensions is demanded to evaluate efficiency and capability of such applications. This work addresses a cost-effective, versatile, and maskless design of biocompatible high-magnetic moment elements at the sub-micrometer scale. Advantages and disadvantages of two high throughput fabrication routes using interference lithography were evaluated. Detrimental steps such as the release process of nanodisks into aqueous solution were optimized to fully preserve the magnetic properties of the material. Then, cell viability of the nanostructures was assessed in primary melanoma cultures. No toxicity effects were observed, validating the potential of these nanostructures in biotechnological applications. The present methodology will allow the fabrication of magnetic nanoelements at the sub-micrometer scale with unique spin configurations, such as vortex state, synthetic antiferromagnets, or exchange-coupled heterostructures, and their use in biomedical techniques that require a remote actuation or a magneto-electric response.


Subject(s)
Nanostructures , Biotechnology , Magnetics , Printing
17.
J Microbiol Immunol Infect ; 51(4): 465-472, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28655573

ABSTRACT

BACKGROUND: Sepsis is a life-threatening illness with a challenging diagnosis. Current serum biomarkers are not sensitive enough for diagnosis. With the aim of finding proteins associated with sepsis, serum protein profile was compared between patients and healthy donors and serum classical inflammatory proteins were analyzed in both groups. METHODS: Serum protein profiles were characterized by two-dimensional electrophoresis (2DE). Identification of the proteins was carried out by mass spectrophotometry and their validation was performed by Enzyme-Linked-ImmunoSorbent Assay (ELISA) in a cohort of 85 patients and 67 healthy donors. Seven classical inflammatory proteins were analyzed in the same cohort by ELISA: interleukin-2 receptor α-chain (sCD25), scavenger receptor cysteine-rich-type-1 (sCD163), tumor-necrosis factor receptor superfamily-member-6 (sFas), hemeoxigenase-1 decycling (HO-1), interleukin-6 (IL-6), interleukin-18 (IL-18) and intercellular adhesion-molecule-1 (sICAM-1). RESULTS: After 2DE, 20 significantly differently expressed spots were identified by mass spectrometry analysis, revealing deregulation of six different proteins upon sepsis and 50% were validated by ELISA: Antithrombin-III (AT-III), Clusterin (CLUS) and Serum amyloid A-1 (SAA-1). Serum concentration of AT-III and CLUS was significantly lower in patients' serum, whereas SAA-1 showed higher values in septic patients. Serum concentration of the seven inflammatory proteins was significantly increased in septic patients. Functional analysis of the ten deregulated proteins revealed an enrichment of proteins related mainly to the activation of the immune response. CONCLUSION: We have identified a panel of ten potential sepsis marker proteins biologically connected and validated in a large number of patients, whose analysis could be considered as a complementary tool for the diagnosis of sepsis.


Subject(s)
Biomarkers/blood , Blood Proteins/analysis , Sepsis/diagnosis , Cohort Studies , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Mass Spectrometry , Middle Aged
18.
Sci Rep ; 7: 41791, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28198817

ABSTRACT

Chloride is the most abundant permeable anion in the cell, and numerous studies in the last two decades highlight the great importance and broad physiological role of chloride currents mediated anion transport. They participate in a multiplicity of key processes, as for instance, the regulation of electrical excitability, apoptosis, cell cycle, epithelial secretion and neuronal excitability. In addition, dysfunction of Cl- channels is involved in a variety of human diseases such as epilepsy, osteoporosis and different cancer types. Historically, chloride channels have been of less interest than the cation channels. In fact, there seems to be practically no quantitative studies of the dynamics of chloride currents. Here, for the first time, we have quantitatively studied experimental calcium-activated chloride fluxes belonging to Xenopus laevis oocytes, and the main results show that the experimental Cl- currents present an informational structure characterized by highly organized data sequences, long-term memory properties and inherent "crossover" dynamics in which persistent correlations arise at short time intervals, while anti-persistent behaviors become dominant in long time intervals. Our work sheds some light on the understanding of the informational properties of ion currents, a key element to elucidate the physiological functional coupling with the integrative dynamics of metabolic processes.


Subject(s)
Calcium/metabolism , Chloride Channels/metabolism , Chlorides/metabolism , Oocytes/metabolism , Xenopus laevis/metabolism , Algorithms , Animals , Membrane Potentials , Models, Biological
19.
Biol Sex Differ ; 7: 17, 2016.
Article in English | MEDLINE | ID: mdl-26998216

ABSTRACT

BACKGROUND: Human pigmentation is a polygenic quantitative trait with high heritability. In addition to genetic factors, it has been shown that pigmentation can be modulated by oestrogens and androgens via up- or down-regulation of melanin synthesis. Our aim was to identify possible sex differences in pigmentation phenotype as well as in melanoma association in a melanoma case-control population of Spanish origin. METHODS: Five hundred and ninety-nine females (316 melanoma cases and 283 controls) and 458 males (234 melanoma cases and 224 controls) were analysed. We genotyped 363 polymorphisms (single nucleotide polymorphisms (SNPs)) from 65 pigmentation gene regions. RESULTS: When samples were stratified by sex, we observed more SNPs associated with dark pigmentation and good sun tolerance in females than in males (107 versus 75; P = 2.32 × 10(-6)), who were instead associated with light pigmentation and poor sun tolerance. Furthermore, six SNPs in TYR, SILV/CDK2, GPR143, and F2RL1 showed strong differences in melanoma risk by sex (P < 0.01). CONCLUSIONS: We demonstrate that these genetic variants are important for pigmentation as well as for melanoma risk, and also provide suggestive evidence for potential differences in genetic effects by sex.

20.
PLoS One ; 10(8): e0134911, 2015.
Article in English | MEDLINE | ID: mdl-26244334

ABSTRACT

We analysed the whole-genome transcriptional profile of 6 cell lines of dark melanocytes (DM) and 6 of light melanocytes (LM) at basal conditions and after ultraviolet-B (UVB) radiation at different time points to investigate the mechanisms by which melanocytes protect human skin from the damaging effects of UVB. Further, we assessed the effect of different keratinocyte-conditioned media (KCM+ and KCM-) on melanocytes. Our results suggest that an interaction between ribosomal proteins and the P53 signaling pathway may occur in response to UVB in both DM and LM. We also observed that DM and LM show differentially expressed genes after irradiation, in particular at the first 6h after UVB. These are mainly associated with inflammatory reactions, cell survival or melanoma. Furthermore, the culture with KCM+ compared with KCM- had a noticeable effect on LM. This effect includes the activation of various signaling pathways such as the mTOR pathway, involved in the regulation of cell metabolism, growth, proliferation and survival. Finally, the comparison of the transcriptional profiles between LM and DM under basal conditions, and the application of natural selection tests in human populations allowed us to support the significant evolutionary role of MIF and ATP6V0B in the pigmentary phenotype.


Subject(s)
Gene Expression Profiling/methods , Melanocytes/radiation effects , Transcriptome/radiation effects , Ultraviolet Rays , Cells, Cultured , Humans , Melanocytes/cytology , Melanocytes/metabolism , Oligonucleotide Array Sequence Analysis , Principal Component Analysis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/radiation effects , Skin/cytology , Skin/metabolism , Skin Pigmentation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...