Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(5): 1290-1295, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36821229

ABSTRACT

In this paper, we take advantage of the high refractive index property of silicon to design a practical and sensitive plasmonic sensor on a photonic integrated circuit (PIC) platform. It has been demonstrated that a label-free refractive index sensor with sensitivity up to 1124 nm/RIU can be obtained using a simple design of a silicon nano-ring with a concentric hexagonal plasmonic cavity. It has also been shown that, with optimum structural parameters, a quality factor (Q-factor) of 307 and a figure of merit (FOM) of 234R I U -1 can be achieved, which are approximately 8 times and 5 times higher than the proposed sensors counterparts, respectively. In addition, the resonance mode of the hexagonal cavity with Si nano-ring (HCS) sensor can be adjusted to operate in the C-band, which is a highly desirable wavelength range in terms of compatibility with devices in PIC technology.

2.
Anal Chem ; 89(3): 1978-1984, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28029032

ABSTRACT

In this study, we present a microwave-based microfluidic mixer that allows rapid mixing within individual droplets efficiently. The designed microwave mixer is a coplanar design with a small footprint, which is fabricated on a glass substrate and integrated with a microfluidic chip. The mixer works essentially as a resonator that accumulates an intensive electromagnetic field into a spiral capacitive gap (around 200 µm), which provides sufficient energy to heat-up droplets that pass through the capacitive gap. This microwave actuation induces nonuniform Marangoni stresses on the interface, which results in three-dimensional motion inside the droplet and thus fast mixing. In order to evaluate the performance of the microwave mixer, droplets with highly viscous fluid, 75% (w/w) glycerol solution, were generated, half of which were seeded with fluorescent dye for imaging purposes. The relative importance of different driving forces for mixing was evaluated qualitatively using magnitude analysis, and the effect of the applied power on mixing performance was also investigated. Mixing efficiency was quantified using the mixing index, which shows as high as 97% mixing efficiency was achieved within the range of milliseconds. This work demonstrates a very unique approach of utilizing microwave technology to facilitate mixing in droplet microfluidics systems, which can potentially open up areas for biochemical synthesis applications.

3.
Lab Chip ; 16(12): 2192-7, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27199210

ABSTRACT

In spite of various existing thermometry methods for microfluidic applications, it remains challenging to measure the temperature of individual droplets in segmented flow since fast moving droplets do not allow sufficient exposure time demanded by both fluorescence based techniques and resistance temperature detectors. In this contribution, we present a microwave thermometry method that is non-intrusive and requires minimal external equipment. This technique relies on the correlation of fluid temperature with the resonance frequency of a microwave sensor that operates at a GHz frequency range. It is a remote yet direct sensing technique, eliminating the need for mixing fluorescent dyes with the working fluid. We demonstrated that the sensor operates reliably over multiple tests and is capable of both heating and sensing. It measures temperature to within ±1.2 °C accuracy and can detect the temperature of individual droplets.

4.
Lab Chip ; 13(19): 3840-6, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23896699

ABSTRACT

Droplet-based microfluidics is an emerging high-throughput screening technology finding applications in a variety of areas such as life science research, drug discovery and material synthesis. In this paper we present a cost-effective, scalable microwave system that can be integrated with microfluidic devices enabling remote, simultaneous sensing and heating of individual nanoliter-sized droplets generated in microchannels. The key component of this microwave system is an electrically small resonator that is able to distinguish between materials with different electrical properties (i.e. permittivity, conductivity). The change in these properties causes a shift in the operating frequency of the resonator, which can be used for sensing purposes. Alternatively, if microwave power is delivered to the sensing region at the frequency associated with a particular material (i.e. droplet), then only this material receives the power while passing the resonator leaving the surrounding materials (i.e. carrier fluid and chip material) unaffected. Therefore this method allows sensing and heating of individual droplets to be inherently synchronized, eliminating the need for external triggers. We confirmed the performance of the sensor by applying it to differentiate between various dairy fluids, identify salt solutions and detect water droplets with different glycerol concentrations. We experimentally verified that this system can increase the droplet temperature from room temperature by 42 °C within 5.62 ms with an input power of 27 dBm. Finally we employed this system to thermally initiate the formation of hydrogel particles out of the droplets that are being heated by this system.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 2): 016602, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19257155

ABSTRACT

Evanescent probe imaging is a powerful characterization technique with subwavelength resolution. In this paper, we present a theoretical and numerical study of the effect of using double negative (DNG) and single negative (SNG) metamaterials in evanescent probe imaging. A sensitivity definition is introduced for evanescent probes and it is shown using quantitative measures that the sensitivity can be increased using DNG material for a target in vacuum and for a buried target. A minimum DNG thickness is required to achieve an improvement in the sensitivity. For a buried target, there is a fundamental limitation on the maximum achievable sensitivity, in addition to a limitation due to the loss of DNG materials. SNG metamaterials have similar improvements over the sensitivity as the DNG materials but there are additional limitations due to the different transmission characteristics of SNG media. To validate the theoretical findings, numerical simulations are presented.

6.
Article in English | MEDLINE | ID: mdl-18002747

ABSTRACT

The realization of double negative (DNG) meta-materials and the evanescent field amplification feature of these materials engendered new approaches to subwavelength imaging. In this paper, we study the possibility of subsurface detection using evanescent fields in the presence of a DNG lens. Evanescent fields at lower frequencies can have better penetration characteristics compared to the propagating fields at higher frequencies. Using DNG materials, subwavelength images of targets buried in a homogeneous lossy medium are presented.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microwaves , Models, Biological , Tomography/methods , Computer Simulation , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...