Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(12): 3575-3580, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38478720

ABSTRACT

Silicon vacancy centers (SiVs) in diamond have emerged as a promising platform for quantum sciences due to their excellent photostability, minimal spectral diffusion, and substantial zero-phonon line emission. However, enhancing their slow nanosecond excited-state lifetime by coupling to optical cavities remains an outstanding challenge, as current demonstrations are limited to ∼10-fold. Here, we couple negatively charged SiVs to sub-diffraction-limited plasmonic cavities and achieve an instrument-limited ≤8 ps lifetime, corresponding to a 135-fold spontaneous emission rate enhancement and a 19-fold photoluminescence enhancement. Nanoparticles are printed on ultrathin diamond membranes on gold films which create arrays of plasmonic nanogap cavities with ultrasmall volumes. SiVs implanted at 5 and 10 nm depths are examined to elucidate surface effects on their lifetime and brightness. The interplay between cavity, implantation depth, and ultrathin diamond membranes provides insights into generating ultrafast, bright SiV emission for next-generation diamond devices.

2.
Nano Lett ; 22(9): 3525-3531, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35472261

ABSTRACT

Actively tunable optical materials integrated with engineered subwavelength structures could enable novel optoelectronic devices, including reconfigurable light sources and tunable on-chip spectral filters. The phase-change material vanadium dioxide (VO2) provides a promising solid-state solution for dynamic tuning; however, previous demonstrations have been limited to thicker and often rough VO2 films or require a lattice-matched substrate for growth. Here, sub-10-nm-thick VO2 films are realized by atomic layer deposition (ALD) and integrated with plasmonic nanogap cavities to demonstrate tunable, spectrally selective absorption across 1200 nm in the near-infrared (NIR). Upon inducing the phase transition via heating, the absorption resonance is blue-shifted by as much as 60 nm. This process is reversible upon cooling and repeatable over more than ten temperature cycles. Dynamic, ultrathin VO2 films deposited by ALD, as demonstrated here, open up new potential architectures and applications where VO2 can be utilized to provide reconfigurability including three-dimensional, flexible and large-area structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...