Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nature ; 615(7951): 280-284, 2023 03.
Article in English | MEDLINE | ID: mdl-36859547

ABSTRACT

Phytoplankton blooms in coastal oceans can be beneficial to coastal fisheries production and ecosystem function, but can also cause major environmental problems1,2-yet detailed characterizations of bloom incidence and distribution are not available worldwide. Here we map daily marine coastal algal blooms between 2003 and 2020 using global satellite observations at 1-km spatial resolution. We found that algal blooms occurred in 126 out of the 153 coastal countries examined. Globally, the spatial extent (+13.2%) and frequency (+59.2%) of blooms increased significantly (P < 0.05) over the study period, whereas blooms weakened in tropical and subtropical areas of the Northern Hemisphere. We documented the relationship between the bloom trends and ocean circulation, and identified the stimulatory effects of recent increases in sea surface temperature. Our compilation of daily mapped coastal phytoplankton blooms provides the basis for global assessments of bloom risks and benefits, and for the formulation or evaluation of management or policy actions.


Subject(s)
Ecosystem , Eutrophication , Oceans and Seas , Phytoplankton , Phytoplankton/growth & development , Temperature , Water Movements , Risk Assessment , Environmental Policy , Ecology , Harmful Algal Bloom , Tropical Climate , History, 21st Century , Geographic Mapping
2.
Ecol Evol ; 11(24): 18136-18150, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003663

ABSTRACT

Since 1960, landings of Atlantic herring have been the greatest of any marine species in Canada, surpassing Atlantic cod and accounting for 24% of the total seafood harvested in Atlantic Canada. The Scotian Shelf-Bay of Fundy herring fisheries (NAFO Division 4VWX) is among Canada's oldest and drives this productivity, accounting for up to 75% of the total herring catch in some years. The stocks' productivity and overall health have declined since 1965. Despite management measures to promote recovery implemented since 2003, biomass remains low and is declining. The factors that drive the productivity of 4VWX herring are primarily unresolved, likely impeding the effectiveness of management actions on this stock. We evaluated potential drivers of herring variability by analyzing 52 time-series that describe the temporal and spatial evolution of the 4VWX herring population and the physical, ecological, and anthropogenic factors that could affect them using structural equation models. Variation in herring biomass was best accounted for by the exploitation rate's negative effect and the geographic distribution of fishing and recruitment. Thermal phenology and temperature adversely and egg predation positively impacted the early life stage mortality rate and, ultimately, adult biomass. These findings are broadly relevant to fisheries management, but particularly for 4VWX herring, where the current management approach does not consider their early life stage dynamics or assess them within the ecosystem or climate change contexts.

3.
Nat Commun ; 11(1): 2235, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376884

ABSTRACT

Future climate impacts and their consequences are increasingly being explored using multi-model ensembles that average across individual model projections. Here we develop a statistical framework that integrates projections from coupled ecosystem and earth-system models to evaluate significance and uncertainty in marine animal biomass changes over the 21st century in relation to socioeconomic indicators at national to global scales. Significant biomass changes are projected in 40%-57% of the global ocean, with 68%-84% of these areas exhibiting declining trends under low and high emission scenarios, respectively. Given unabated emissions, maritime nations with poor socioeconomic statuses such as low nutrition, wealth, and ocean health will experience the greatest projected losses. These findings suggest that climate-driven biomass changes will widen existing equity gaps and disproportionally affect populations that contributed least to global CO2 emissions. However, our analysis also suggests that such deleterious outcomes are largely preventable by achieving negative emissions (RCP 2.6).

4.
Sci Adv ; 5(11): eaay9969, 2019 11.
Article in English | MEDLINE | ID: mdl-31807711

ABSTRACT

The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process. Climate-smart management objectives should become the default for all protected areas, and made into an explicit international policy target. Furthermore, incentives to use more dynamic management tools would increase the climate change responsiveness of the MPA network as a whole. Given ongoing negotiations on international conservation targets, now is the ideal time to proactively reform management of the global seascape for the dynamic climate-biodiversity reality.


Subject(s)
Acclimatization , Aquatic Organisms , Biodiversity , Climate Change , Conservation of Natural Resources , Oceans and Seas
6.
Proc Natl Acad Sci U S A ; 115(25): 6422-6427, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29866836

ABSTRACT

Virtually all studies reporting deepening with increasing size or age by fishes involve commercially harvested species. Studies of North Sea plaice in the early 1900s first documented this phenomenon (named Heincke's law); it occurred at a time of intensive harvesting and rapid technological changes in fishing methods. The possibility that this deepening might be the result of harvesting has never been evaluated. Instead, age- or size-related deepening have been credited to interactions between density-dependent food resources and density-independent environmental factors. Recently, time-dependent depth variations have been ascribed to ocean warming. We use a model, initialized from observations of Atlantic cod (Gadus morhua) on the eastern Scotian Shelf, where an age-dependent deepening of ∼60 m was observed, to assess the effect of size- and depth-selective exploitation on fish distribution. Exploitation restricted to the upper 80 m can account for ∼72% of the observed deepening; by extending exploitation to 120 m, all of the deepening can be accounted for. In the absence of fishing, the model indicated no age-related deepening. Observations of depth distributions of older cod during a moratorium on fishing supported this prediction; however, younger cod exhibited low-amplitude deepening (10-15 m) suggestive of an ontogenetic response. The implications of these findings are manifold, particularly as they relate to hypotheses advanced to explain the ecological and evolutionary basis for ontogenetic deepening and to recent calls for the adoption of evidence of species deepening as a biotic indicator or "footprint" of warming seas.


Subject(s)
Fishes/physiology , Animals , Biological Ontologies , Fisheries , Gadus morhua , North Sea , Population Dynamics , Seafood
7.
Nat Ecol Evol ; 1(10): 1484-1494, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29185511

ABSTRACT

Seasonal cycles of primary production (phenology) critically influence biogeochemical cycles, ecosystem structure and climate. In the oceans, primary production is dominated by microbial phytoplankton that drift with currents, and show rapid turnover and chaotic dynamics, factors that have hindered understanding of their phenology. We used all available observations of upper-ocean phytoplankton concentration (1995-2015) to describe global patterns of phytoplankton phenology, the environmental factors that structure them, and their relationships to terrestrial patterns. Phytoplankton phenologies varied strongly by latitude and productivity regime: those in high-production regimes were governed by insolation, whereas those in low-production regimes were constrained by vertical mixing. In eight of ten ocean regions, our findings contradict the hypothesis that phytoplankton phenologies are coherent at basin scales. Lastly, the spatial organization of phenological patterns in the oceans was broadly similar to those on land, suggesting an overarching effect of insolation on the phenology of primary producers globally.


Subject(s)
Biota , Climate , Oceans and Seas , Phytoplankton/physiology , Ecosystem , Phytoplankton/classification
8.
Proc Natl Acad Sci U S A ; 113(29): 8248-53, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27382163

ABSTRACT

Synchronous variations in the abundance of geographically distinct marine fish populations are known to occur across spatial scales on the order of 1,000 km and greater. The prevailing assumption is that this large-scale coherent variability is a response to coupled atmosphere-ocean dynamics, commonly represented by climate indexes, such as the Atlantic Multidecadal Oscillation and North Atlantic Oscillation. On the other hand, it has been suggested that exploitation might contribute to this coherent variability. This possibility has been generally ignored or dismissed on the grounds that exploitation is unlikely to operate synchronously at such large spatial scales. Our analysis of adult fishing mortality and spawning stock biomass of 22 North Atlantic cod (Gadus morhua) stocks revealed that both the temporal and spatial scales in fishing mortality and spawning stock biomass were equivalent to those of the climate drivers. From these results, we conclude that greater consideration must be given to the potential of exploitation as a driving force behind broad, coherent variability of heavily exploited fish species.


Subject(s)
Gadus morhua , Animals , Atlantic Ocean , Biomass , Climate Change , Commerce , Fisheries , Mortality , Population Dynamics
9.
Ecol Lett ; 18(10): 1001-11, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26252155

ABSTRACT

A key question in ecology is under which conditions ecosystem structure tends to be controlled by resource availability vs. consumer pressure. Several hypotheses derived from theory, experiments and observational field studies have been advanced, yet a unified explanation remains elusive. Here, we identify common predictors of trophic control in a synthetic analysis of 52 observational field studies conducted within marine ecosystems across the Northern Hemisphere and published between 1951 and 2014. Spatial regression analysis of 45 candidate variables revealed temperature to be the dominant predictor, with unimodal effects on trophic control operating both directly (r(2) = 0.32; P < 0.0001) and indirectly through influences on turnover rate and quality of primary production, biodiversity and omnivory. These findings indicate that temperature is an overarching determinant of the trophic dynamics of marine ecosystems, and that variation in ocean temperature will affect the trophic structure of marine ecosystems through both direct and indirect mechanisms.


Subject(s)
Ecosystem , Marine Biology , Models, Biological , Temperature , Animals , Biodiversity , Databases, Factual , Food Chain , Geography , Linear Models , Multivariate Analysis , Plankton , Spatial Analysis
10.
Ecol Lett ; 18(6): 504-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25919397

ABSTRACT

It is widely believed that consumer control is a weak regulator of marine phytoplankton communities. It remains unclear, however, why this should be the case when marine consumers routinely regulate their prey at higher trophic levels. One possibility is that the weak consumer control of phytoplankton communities results from the inability of field researchers to effectively account for consumer-prey trophic relationships operating at the scale of the plankton. We explored this issue by reviewing studies of trophic control in marine plankton. Experimental studies indicate that size is a critical determinant of feeding relationships among plankton. In sharp contrast, of the 51 field studies reviewed, 78% did not distinguish among the sizes or species of phytoplankton and their consumers, but instead assumed a general bulk phytoplankton-zooplankton trophic connection. Such an approach neglects the possibility that several trophic connections may separate the smallest phytoplankton (0.2 µm) from the larger zooplankton (~ 1000 µm), a remarkable size differential exceeding that between a mouse (~10 cm) and an elephant (~2500 cm). The size-based approach we propose integrates theory, experiments and field observations and has the potential to greatly enhance our understanding of the causes and consequences of recently documented restructuring of plankton communities.


Subject(s)
Biomass , Food Chain , Phytoplankton/physiology , Zooplankton/physiology , Animals , Cell Size , Marine Biology
11.
Science ; 346(6206): 241-4, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25278504

ABSTRACT

In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related "Aichi Targets" to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress.


Subject(s)
Biodiversity , Conservation of Natural Resources , Extinction, Biological
12.
Ecol Lett ; 17(5): 614-23, 2014 May.
Article in English | MEDLINE | ID: mdl-24575918

ABSTRACT

Ocean warming has been implicated in the observed decline of oceanic phytoplankton biomass. Some studies suggest a physical pathway of warming via stratification and nutrient flux, and others a biological effect on plankton metabolic rates; yet the relative strength and possible interaction of these mechanisms remains unknown. Here, we implement projections from a global circulation model in a mesocosm experiment to examine both mechanisms in a multi-trophic plankton community. Warming treatments had positive direct effects on phytoplankton biomass, but these were overcompensated by the negative effects of decreased nutrient flux. Zooplankton switched from phytoplankton to grazing on ciliates. These results contrast with previous experiments under nutrient-replete conditions, where warming indirectly reduced phytoplankton biomass via increased zooplankton grazing. We conclude that the effect of ocean warming on marine plankton depends on the nutrient regime, and provide a mechanistic basis for understanding global change in marine ecosystems.


Subject(s)
Aquatic Organisms/physiology , Models, Biological , Oceans and Seas , Plankton/physiology , Temperature , Animals , Computer Simulation
13.
Nature ; 466(7306): 591-6, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20671703

ABSTRACT

In the oceans, ubiquitous microscopic phototrophs (phytoplankton) account for approximately half the production of organic matter on Earth. Analyses of satellite-derived phytoplankton concentration (available since 1979) have suggested decadal-scale fluctuations linked to climate forcing, but the length of this record is insufficient to resolve longer-term trends. Here we combine available ocean transparency measurements and in situ chlorophyll observations to estimate the time dependence of phytoplankton biomass at local, regional and global scales since 1899. We observe declines in eight out of ten ocean regions, and estimate a global rate of decline of approximately 1% of the global median per year. Our analyses further reveal interannual to decadal phytoplankton fluctuations superimposed on long-term trends. These fluctuations are strongly correlated with basin-scale climate indices, whereas long-term declining trends are related to increasing sea surface temperatures. We conclude that global phytoplankton concentration has declined over the past century; this decline will need to be considered in future studies of marine ecosystems, geochemical cycling, ocean circulation and fisheries.


Subject(s)
Biomass , Phytoplankton/growth & development , Phytoplankton/isolation & purification , Seawater , Chlorophyll/analysis , Climate , Ecosystem , Global Warming , History, 19th Century , History, 20th Century , Marine Biology , Oceans and Seas , Population Density , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...