Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37763406

ABSTRACT

The present work reports the results of a systematic study on the evolution of the morphological properties of porous carbons derived from coffee waste using a one-pot potassium-hydroxide-assisted process at temperatures in the range of 400-900 °C. Raw materials and obtained carbons were studied by TG, DTG, SEM and nitrogen adsorption porosimetry. The decomposition temperature ranges for hemicellulose, cellulose and lignin as the main component of the feedstock have been established. It is shown that the proposed method for the thermochemical treatment of coffee waste makes it possible to obtain activated carbon with a controllable pore size distribution and a high specific surface area (up to 1050 m2/g). A comparative study of the evolution of the distribution of pore size, pore area and pore volume has been carried out based on the BJH and NL-DFT (slit-like pores approximation) methods. The fractal dimension of the obtained carbons has been calculated by Frenkel-Halsey-Hill method for single-layer and multilayer adsorptions.

2.
Chemosphere ; 326: 138364, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933839

ABSTRACT

The cobalt ferrite Fenton catalysts were obtained by the flow co-precipitation method. FTIR, XRD, and Mössbauer spectroscopy confirmed the spinel structure. The crystallite size of the as-synthesized sample is 12 nm, while the samples annealed at 400 and 600 °C have crystallite sizes of 16 and 18 nm, respectively. The as-synthesized sample has a grain size of 0.1-5.0 µm in size, while the annealed samples have grain sizes of 0.5 µm-15 µm. The degree of structure inversion ranges from 0.87 to 0.97. The catalytic activity of cobalt ferrites has been tested in the decomposition of hydrogen peroxide and the oxidation of caffeine. The annealing of the CoFe2O4 increases its catalytic activity in both model reactions, with the optimal annealing temperature being 400 °C. The reaction order has been found to increase with increasing H2O2 concentration. Electromagnetic heating accelerates the catalytic reaction more than 2 times. As a result, the degree of caffeine decomposition increases from 40% to 85%. The used catalysts have insignificant changes in crystallite size and distribution of cations. Thus, the electromagnetically heated cobalt ferrite can be a controlled catalyst in water purification technology.


Subject(s)
Hydrogen Peroxide , Water Purification , Hydrogen Peroxide/chemistry , Caffeine , Oxides , Cobalt/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...