Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 11: 231, 2020.
Article in English | MEDLINE | ID: mdl-32194605

ABSTRACT

An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl ß-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress.

2.
Front Plant Sci ; 9: 1848, 2018.
Article in English | MEDLINE | ID: mdl-30619416

ABSTRACT

Cyanobacterial 2-Cys peroxiredoxin (thioredoxin peroxidase, TPX) comprises a family of thiol antioxidant enzymes critically involved in cell survival under oxidative stress. In our previous study, a putative TPX was identified using a proteomics analysis of rice (Oryza sativa L. japonica, OsTPX) seedlings exposed to oxidative stress. This OsTPX gene is structurally similar to the Synechococcus elongatus TPX gene in the highly conserved redox-active disulfide bridge (Cys114, Cys236) and other highly conserved regions. In the present study, the OsTPX gene was cloned into rice plants and S. elongatus PCC 7942 strain to study hydrogen peroxide (H2O2) stress responses. The OsTPX gene expression was confirmed using semi-quantitative RT-PCR and western blot analysis. The OsTPX gene expression increased growth under oxidative stress by decreasing reactive oxygen species and malondialdehyde level. Additionally, the OsTPX gene expression in S. elongatus PCC 7942 (OT) strain exhibited a reduced loss of chlorophyll and enhanced photosynthesis efficiency under H2O2 stress, thereby increasing biomass yields twofold compared with that of the control wild type (WT) strain. Furthermore, redox balance, ion homeostasis, molecular chaperone, and photosynthetic systems showed upregulation of some genes in the OT strain than in the WT strain by RNA-Seq analysis. Thus, OsTPX gene expression enhances oxidative stress tolerance by increasing cell defense regulatory networks through the cellular redox homeostasis in the rice plants and S. elongatus PCC 7942.

3.
Biotechnol Lett ; 39(10): 1499-1507, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28667417

ABSTRACT

OBJECTIVES: To improve the oxidative stress tolerance, biomass yield, and ascorbate/dehydroascorbate (AsA/DHA) ratio of Synechococcus elongatus PCC 7942 in the presence of H2O2, by heterologous expression of the dehydroascorbate reductase (DHAR) gene from Brassica juncea (BrDHAR). RESULTS: Under H2O2 stress, overexpression of BrDHAR in the transgenic strain (BrD) of S. elongatus greatly increased the AsA/DHA ratio. As part of the AsA recycling system, the oxidative stress response induced by reactive oxygen species was enhanced, and intracellular H2O2 level decreased. In addition, under H2O2 stress conditions, the BrD strain displayed increased growth rate and biomass, as well as higher chlorophyll content and deeper pigmentation than did wild-type and control strains. CONCLUSION: By maintaining the AsA pool and redox homeostasis, the heterologous expression of BrDHAR increased S. elongatus tolerance to H2O2 stress, improving the biomass yield under these conditions. The results suggest that the BrD strain of S. elongatus, with its ability to attenuate the deleterious effects of ROS caused by environmental stressors, could be a promising platform for the generation of biofuels and other valuable bioproducts.


Subject(s)
Mustard Plant/enzymology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Synechococcus/growth & development , Ascorbic Acid/metabolism , Biomass , Chlorophyll/metabolism , Cloning, Molecular , Dehydroascorbic Acid , Hydrogen Peroxide/metabolism , Mustard Plant/genetics , Oxidative Stress , Plant Proteins/genetics , Plant Proteins/metabolism , Synechococcus/genetics
4.
J Bacteriol ; 198(18): 2439-47, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27381914

ABSTRACT

UNLABELLED: Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes. Despite immense progress in understanding of the circadian clock itself, many of the connections between the clock and other cellular signaling systems have remained enigmatic. To narrow the search for additional TCS components that connect to the clock, we utilized direct-coupling analysis (DCA), a statistical analysis of covariant residues among related amino acid sequences, to infer coevolution of new and known clock TCS components. DCA revealed a high degree of interaction specificity between SasA and CikA with RpaA, as expected, but also with the phosphate-responsive response regulator SphR. Coevolutionary analysis also predicted strong specificity between RpaA and a previously undescribed kinase, HK0480 (herein CikB). A knockout of the gene for CikB (cikB) in a sasA cikA null background eliminated the RpaA phosphorylation and RpaA-controlled transcription that is otherwise present in that background and suppressed cell elongation, supporting the notion that CikB is an interactor with RpaA and the clock network. This study demonstrates the power of DCA to identify subnetworks and key interactions in signaling pathways and of combinatorial mutagenesis to explore the phenotypic consequences. Such a combined strategy is broadly applicable to other prokaryotic systems. IMPORTANCE: Signaling networks are complex and extensive, comprising multiple integrated pathways that respond to cellular and environmental cues. A TCS interaction model, based on DCA, independently confirmed known interactions and revealed a core set of subnetworks within the larger HK-RR set. We validated high-scoring candidate proteins via combinatorial genetics, demonstrating that DCA can be utilized to reduce the search space of complex protein networks and to infer undiscovered specific interactions for signaling proteins in vivo Significantly, new interactions that link circadian response to cell division and fitness in a light/dark cycle were uncovered. The combined analysis also uncovered a more basic core clock, illustrating the synergy and applicability of a combined computational and genetic approach for investigating prokaryotic signaling networks.


Subject(s)
Bacterial Proteins/metabolism , Circadian Clocks/physiology , Computer Simulation , Gene Expression Regulation, Bacterial/physiology , Synechococcus/metabolism , Bacterial Proteins/genetics , Evolution, Molecular , Mutation , Signal Transduction/physiology , Synechococcus/genetics
5.
Annu Rev Genet ; 49: 485-505, 2015.
Article in English | MEDLINE | ID: mdl-26442846

ABSTRACT

Early research on the cyanobacterial clock focused on characterizing the genes needed to keep, entrain, and convey time within the cell. As the scope of assays used in molecular genetics has expanded to capture systems-level properties (e.g., RNA-seq, ChIP-seq, metabolomics, high-throughput screening of genetic variants), so has our understanding of how the clock fits within and influences a broader cellular context. Here we review the work that has established a global perspective of the clock, with a focus on (a) an emerging network-centric view of clock architecture, (b) mechanistic insights into how temporal and environmental cues are transmitted and integrated within this network,


Subject(s)
Circadian Rhythm/physiology , Synechococcus/physiology , Adaptation, Biological , Biological Evolution , Gene Expression Regulation, Bacterial , Signal Transduction , Synechococcus/cytology
6.
Science ; 349(6245): 324-8, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26113641

ABSTRACT

Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Circadian Rhythm Signaling Peptides and Proteins/chemistry , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Circadian Rhythm , Synechococcus/physiology , Bacterial Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , Phosphorylation , Protein Folding , Protein Structure, Secondary , Synechococcus/metabolism
7.
Proc Natl Acad Sci U S A ; 112(7): 2198-203, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25653337

ABSTRACT

The response regulator RpaB (regulator of phycobilisome associated B), part of an essential two-component system conserved in cyanobacteria that responds to multiple environmental signals, has recently been implicated in the control of cell dimensions and of circadian rhythms of gene expression in the model cyanobacterium Synechococcus elongatus PCC 7942. However, little is known of the molecular mechanisms that underlie RpaB functions. In this study we show that the regulation of phenotypes by RpaB is intimately connected with the activity of RpaA (regulator of phycobilisome associated A), the master regulator of circadian transcription patterns. RpaB affects RpaA activity both through control of gene expression, a function requiring an intact effector domain, and via altering RpaA phosphorylation, a function mediated through the N-terminal receiver domain of RpaB. Thus, both phosphorylation cross-talk and coregulation of target genes play a role in the genetic interactions between the RpaA and RpaB pathways. In addition, RpaB∼P levels appear critical for survival under light:dark cycles, conditions in which RpaB phosphorylation is environmentally driven independent of the circadian clock. We propose that the complex regulatory interactions between the essential and environmentally sensitive NblS-RpaB system and the SasA-RpaA clock output system integrate relevant extra- and intracellular signals to the circadian clock.


Subject(s)
Bacterial Proteins/physiology , Circadian Rhythm , Cyanobacteria/physiology , Cyanobacteria/genetics , Genes, Bacterial , Phosphorylation
8.
Methods Enzymol ; 551: 153-73, 2015.
Article in English | MEDLINE | ID: mdl-25662456

ABSTRACT

The central oscillator of the cyanobacterial circadian clock is unique in the biochemical simplicity of its components and the robustness of the oscillation. The oscillator is composed of three cyanobacterial proteins: KaiA, KaiB, and KaiC. If very pure preparations of these three proteins are mixed in a test tube in the right proportions and with ATP and MgCl2, the phosphorylation states of KaiC will oscillate with a circadian period, and these states can be analyzed simply by SDS-PAGE. The purity of the proteins is critical for obtaining robust oscillation. Contaminating proteases will destroy oscillation by degradation of Kai proteins, and ATPases will attenuate robustness by consumption of ATP. Here, we provide a detailed protocol to obtain pure recombinant proteins from Escherichia coli to construct a robust cyanobacterial circadian oscillator in vitro. In addition, we present a protocol that facilitates analysis of phosphorylation states of KaiC and other phosphorylated proteins from in vivo samples.


Subject(s)
Bacterial Proteins/chemistry , Circadian Clocks , Circadian Rhythm Signaling Peptides and Proteins/chemistry , Synechococcus/physiology , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , Chromatography, Affinity , Circadian Rhythm Signaling Peptides and Proteins/biosynthesis , Circadian Rhythm Signaling Peptides and Proteins/isolation & purification , Enzyme Assays , Escherichia coli , Phosphorylation , Protein Processing, Post-Translational , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
9.
Proc Natl Acad Sci U S A ; 111(47): E5069-75, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25385627

ABSTRACT

The circadian input kinase of the cyanobacterium Synechococcus elongatus PCC 7942 (CikA) is important both for synchronizing circadian rhythms with external environmental cycles and for transferring temporal information between the oscillator and the global transcriptional regulator RpaA (regulator of phycobilisome-associated A). KOs of cikA result in one of the most severely altered but still rhythmic circadian phenotypes observed. We chemically mutagenized a cikA-null S. elongatus strain and screened for second-site suppressor mutations that could restore normal circadian rhythms. We identified two independent mutations in the Synechococcus adaptive sensor A (sasA) gene that produce nearly WT rhythms of gene expression, likely because they compensate for the loss of CikA on the temporal phosphorylation of RpaA. Additionally, these mutations restore the ability to reset the clock after a short dark pulse through an output-independent pathway, suggesting that SasA can influence entrainment through direct interactions with KaiC, a property previously unattributed to it. These experiments question the evolutionary advantage of integrating CikA into the cyanobacterial clock, challenge the conventional construct of separable input and output pathways, and show how easily the cell can adapt to restore phenotype in a severely compromised genetic network.


Subject(s)
Bacterial Proteins/genetics , Circadian Rhythm , Gene Regulatory Networks , Genes, Bacterial , Point Mutation , Protein Kinases/genetics , Synechococcus/genetics , Polymorphism, Genetic
10.
Proc Natl Acad Sci U S A ; 110(40): E3849-57, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043774

ABSTRACT

The mechanisms by which cellular oscillators keep time and transmit temporal information are poorly understood. In cyanobacteria, the timekeeping aspect of the circadian oscillator, composed of the KaiA, KaiB, and KaiC proteins, involves a cyclic progression of phosphorylation states at Ser431 and Thr432 of KaiC. Elucidating the mechanism that uses this temporal information to modulate gene expression is complicated by unknowns regarding the number, structure, and regulatory effects of output components. To identify oscillator signaling states without a complete description of the output machinery, we defined a simple metric, Kai-complex output activity (KOA), that represents the difference in expression of reporter genes between strains that carry specific variants of KaiC and baseline strains that lack KaiC. In the absence of the oscillator, expression of the class 1 paradigm promoter P(kaiBC) was locked at its usual peak level; conversely, that of the class 2 paradigm promoter P(purF) was locked at its trough level. However, for both classes of promoters, peak KOA in wild-type strains coincided late in the circadian cycle near subjective dawn, when KaiC-pST becomes most prevalent (Ser431 is phosphorylated and Thr432 is not). Analogously, peak KOA was detected specifically for the phosphomimetic of KaiC-pST (KaiC-ET). Notably, peak KOA required KaiB, indicating that a KaiBC complex is involved in the output activity. We also found evidence that phosphorylated RpaA (regulator of phycobilisome associated) represses an RpaA-independent output of KOA. A simple mathematical expression successfully simulated two key features of the oscillator-the time of peak KOA and the peak-to-trough amplitude changes.


Subject(s)
Bacterial Proteins/metabolism , Biological Clocks/physiology , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Circadian Rhythm/physiology , Models, Biological , Synechococcus/physiology , Computer Simulation , Immunoblotting , Luminescent Measurements , Synechococcus/metabolism
11.
Proc Natl Acad Sci U S A ; 110(34): 13950-5, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23918383

ABSTRACT

The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.


Subject(s)
Alleles , Circadian Rhythm/genetics , Gene Expression Regulation/genetics , Genes, Bacterial/genetics , Peptides/genetics , Synechococcus/genetics , Circadian Rhythm/physiology , Immunoblotting , Microscopy, Fluorescence , Mutagenesis, Site-Directed , Open Reading Frames/genetics , Reverse Transcriptase Polymerase Chain Reaction , Synechococcus/physiology
12.
Bioarchitecture ; 1(4): 196-199, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22069514

ABSTRACT

Aspects of cellular architecture, such as cytoskeletal asymmetry cues, play critical roles in directing the placement of organelles and establishing the sites of their formation. In the model green alga Chlamydomonas, the photosensory eyespot occupies a defined position in relation to the flagella and microtubule cytoskeleton. Investigations into the cellular mechanisms of eyespot placement and assembly have aided our understanding of the interplay between cytoskeletal and plastid components of the cell. The eyespot, which must be assembled anew after each cell division, is a multi-layered organelle consisting of stacks of carotenoid-filled pigment granules in the chloroplast and rhodopsin photoreceptors in the plasma membrane. Placement of the eyespot is determined on both the latitudinal and longitudinal axes of the cell by the daughter four-membered (D4) microtubule rootlet. Recent findings have contributed to the hypothesis that the eyespot photoreceptor molecules are directed from the Golgi to the daughter hemisphere of the cell and trafficked along the D4 microtubule rootlet. EYE2, a chloroplast-envelope protein, forms an elliptical patch together with the photoreceptors and establishes the site for assembly of the pigment granule arrays in the chloroplast, connecting the positioning information of the cytoskeleton to assembly of the pigment granule arrays in the chloroplast.

13.
Cytoskeleton (Hoboken) ; 68(8): 459-69, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21766471

ABSTRACT

The characteristic geometry of the unicellular chlorophyte Chlamydomonas reinhardtii has contributed to its adoption as a model system for cellular asymmetry and organelle positioning. The eyespot, a photosensitive organelle, is localized asymmetrically in the cell at a precisely defined position relative to the flagella and cytoskeletal microtubule rootlets. We have isolated a mutant, named pey1 for posterior eyespot, with variable microtubule rootlet lengths. The length of the acetylated daughter four-membered (D4) microtubule rootlet correlates with the position of the eyespot, which appears in a posterior position in the majority of cells. The correlation of rootlet length with eyespot positioning was also observed in the cmu1 mutant, which has longer acetylated microtubules, and the mlt1 mutant, in which the rootlet microtubules are shorter. Observation of eyespot positioning after depolymerization of rootlet microtubules indicated that eyespot position is fixed early in eyespot development and becomes independent of the rootlet. Our data demonstrate that the length of the D4 rootlet is the major determinant of eyespot positioning on the anterior-posterior axis and are suggestive that the gene product of the PEY1 locus is a novel regulator of acetylated microtubule length.


Subject(s)
Chlamydomonas reinhardtii/physiology , Microtubules/physiology , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/ultrastructure , Microtubules/genetics , Microtubules/ultrastructure , Organelles/genetics
14.
J Cell Biol ; 193(4): 741-53, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21555459

ABSTRACT

The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Cytoskeletal Proteins/metabolism , Microtubules/metabolism , Photoreceptors, Plant/metabolism , Plant Proteins/metabolism , Rhodopsin/metabolism , Acetylation , Chlamydomonas reinhardtii/genetics , Cytoskeletal Proteins/genetics , Fluorescent Antibody Technique , Microscopy, Fluorescence , Microtubules/genetics , Mutation , Plant Proteins/genetics , Protein Transport
15.
Mol Biol Cell ; 22(9): 1421-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21372178

ABSTRACT

The eyespot of the biflagellate unicellular green alga Chlamydomonas reinhardtii is a complex organelle that facilitates directional responses of the cell to environmental light stimuli. The eyespot, which assembles de novo after every cell division and is associated with the daughter four-membered (D4) microtubule rootlet, comprises an elliptical patch of rhodopsin photoreceptors on the plasma membrane and stacks of carotenoid-rich pigment granule arrays in the chloroplast. Two loci, EYE2 and EYE3, define factors involved in the formation and organization of the eyespot pigment granule arrays. Whereas EYE3, a serine/threonine kinase of the ABC1 family, localizes to pigment granules, EYE2 localization corresponds to an area of the chloroplast envelope in the eyespot. EYE2 is positioned along, and adjacent to, the D4 rootlet in the absence of pigment granules. The eyespot pigment granule array is required for maintenance of the elliptical shape of both the overlying EYE2 and channelrhodopsin-1 photoreceptor patches. We propose a model of eyespot assembly wherein rootlet and photoreceptor direct EYE2 to an area of the chloroplast envelope, where it acts to facilitate assembly of pigment granule arrays, and EYE3 plays a role in the biogenesis of the pigment granules.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Photoreceptors, Plant/metabolism , Pigments, Biological , Plant Proteins/metabolism , Protein Multimerization , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Base Sequence , Cell Membrane , Chlamydomonas reinhardtii/genetics , Chloroplasts , Immunoblotting , Membrane Proteins , Organoids , Sequence Alignment , Sequence Analysis, DNA , Signal Transduction
16.
G3 (Bethesda) ; 1(6): 489-98, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22384359

ABSTRACT

The photosensory eyespot of the green alga Chlamydomonas reinhardtii is a model system for the study of organelle biogenesis and placement. Eyespot assembly and positioning are governed by several genetic loci that have been identified in forward genetic screens for phototaxis-defective mutants. These include the previously described miniature-eyespot mutant min1, the multiple-eyespot mutant mlt1, the eyeless mutants eye2 and eye3, and two previously uncharacterized eyespot mutants, min2 and mlt2. In this study, effects of miniature- and multiple-eyespot mutations and their combinations on the localization and expression levels of the rhodopsin photoreceptor channelrhodopsin-1 (ChR1) and the localization of the eyespot-assembly proteins EYE2 and EYE3 were examined. min2 mutants assemble a properly organized, albeit nonfunctional, eyespot that is slightly smaller than wild-type; however, combination of the min2 and mlt1 mutations resulted in drastic reduction of photoreceptor levels. Both stationary-phase mlt1 and mlt2 cells have supernumerary, mislocalized eyespots that exhibit partial or total dissociation of the eyespot layers. In these mutant strains, photoreceptor patches in the plasma membrane were never associated with pigment granule arrays in the chloroplast stroma unless EYE2 was present in the intervening envelope. The data suggest that MIN2 is required for the photoreceptive ability of the eyespot and that MLT2 plays a major role in regulating eyespot number, placement, and integrity.

SELECTION OF CITATIONS
SEARCH DETAIL
...