Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Gene Med ; 20(2-3): e3006, 2018 02.
Article in English | MEDLINE | ID: mdl-29552747

ABSTRACT

BACKGROUND: The gene therapeutic Cal-1 comprises the anti-HIV agents: (i) sh5, a short hairpin RNA to CCR5 that down-regulates CCR5 expression and (ii) maC46 (C46), a peptide that inhibits viral fusion with the cell membrane. These constructs were assessed for inhibition of viral replication and selective cell expansion in a number of settings. METHODS: HIV replication, selective outgrowth and cell surface viral binding were analysed with a single cycle infection assay of six pseudotyped HIV strains and a static and longitudinal passaging of MOLT4/CCR5 cells with HIV. Pronase digestion of surface virus and fluorescence microscopy assessed interactions between HIV virions and transduced cells. RESULTS: Cal-1 reduced CCR5 expression in peripheral blood mononuclear cells to CCR5Δ32 heterozygote levels. Even low level transduction resulted in significant preferential expansion in MOLT4/CCR5 gene-containing cells over a 3-week HIV challenge regardless of viral suppression [12.5% to 47.0% (C46), 46.7% (sh5), 62.2% (Dual), respectively]. The sh5 and Dual constructs at > 95% transduction also significantly suppressed virus to day 12 in the passage assay and all constructs, at varying percentage transduction inhibited virus in static culture. No escape mutations were present through 9 weeks of challenge. The Dual construct significantly suppressed infection by a panel of CCR5-using viruses, with its efficacy being independently determined from the single constructs. Dual and sh5 inhibited virion internalisation, as determined via pronase digestion of surface bound virus, by 70% compared to 13% for C46. CONCLUSIONS: The use of two anti-HIV genes allows optimal preferential survival and inhibition of HIV replication, with the impact on viral load being dependent on the percentage of gene marked cells.


Subject(s)
Genetic Therapy , HIV Infections/therapy , Receptors, CCR5/genetics , Recombinant Fusion Proteins/genetics , Gene Expression Regulation/genetics , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Leukocytes, Mononuclear/virology , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Transduction, Genetic , Viral Load/genetics , Virus Replication/genetics
2.
Viruses ; 7(8): 4186-203, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26225991

ABSTRACT

Allogeneic transplantation with CCR5-delta 32 (CCR5-d32) homozygous stem cells in an HIV infected individual in 2008, led to a sustained virus control and probably eradication of HIV. Since then there has been a high degree of interest to translate this approach to a wider population. There are two cellular ways to do this. The first one is to use a CCR5 negative cell source e.g., hematopoietic stem cells (HSC) to copy the initial finding. However, a recent case of a second allogeneic transplantation with CCR5-d32 homozygous stem cells suffered from viral escape of CXCR4 quasi-species. The second way is to knock down CCR5 expression by gene therapy. Currently, there are five promising techniques, three of which are presently being tested clinically. These techniques include zinc finger nucleases (ZFN), clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 nuclease (CRISPR/Cas9), transcription activator-like effectors nuclease (TALEN), short hairpin RNA (shRNA), and a ribozyme. While there are multiple gene therapy strategies being tested, in this review we reflect on our current knowledge of inhibition of CCR5 specifically and whether this approach allows for consequent viral escape.


Subject(s)
Biological Therapy/methods , HIV Infections/therapy , Receptors, CCR5/metabolism , Receptors, HIV/antagonists & inhibitors , Receptors, HIV/metabolism , Gene Knockdown Techniques , Humans , Receptors, CCR5/genetics , Receptors, HIV/genetics , Stem Cell Transplantation
3.
Mol Ther Nucleic Acids ; 4: e236, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25872029

ABSTRACT

We described earlier a dual-combination anti-HIV type 1 (HIV-1) lentiviral vector (LVsh5/C46) that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT) mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1) vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC) either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection.

4.
Article in English | MEDLINE | ID: mdl-26015947

ABSTRACT

Gene transfer has therapeutic potential for treating HIV-1 infection by generating cells that are resistant to the virus. We have engineered a novel self-inactivating lentiviral vector, LVsh5/C46, using two viral-entry inhibitors to block early steps of HIV-1 cycle. The LVsh5/C46 vector encodes a short hairpin RNA (shRNA) for downregulation of CCR5, in combination with the HIV-1 fusion inhibitor, C46. We demonstrate here the effective delivery of LVsh5/C46 to human T cell lines, peripheral blood mononuclear cells, primary CD4(+) T lymphocytes, and CD34(+) hematopoietic stem/progenitor cells (HSPC). CCR5-targeted shRNA (sh5) and C46 peptide were stably expressed in the target cells and were able to effectively protect gene-modified cells against infection with CCR5- and CXCR4-tropic strains of HIV-1. LVsh5/C46 treatment was nontoxic as assessed by cell growth and viability, was noninflammatory, and had no adverse effect on HSPC differentiation. LVsh5/C46 could be produced at a scale sufficient for clinical development and resulted in active viral particles with very low mutagenic potential and the absence of replication-competent lentivirus. Based on these in vitro results, plus additional in vivo safety and efficacy data, LVsh5/C46 is now being tested in a phase 1/2 clinical trial for the treatment of HIV-1 disease.

5.
Mol Ther Nucleic Acids ; 2: e137, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24301868

ABSTRACT

Despite prolonged and intensive application, combined antiretroviral therapy cannot eradicate human immunodeficiency virus (HIV)-1 because it is harbored as a latent infection, surviving for long periods of time. Alternative approaches are required to overcome the limitations of current therapy. We have been developing a short interfering RNA (siRNA) gene silencing approach. Certain siRNAs targeting promoter regions of genes induce transcriptional gene silencing. We previously reported substantial transcriptional gene silencing of HIV-1 replication by an siRNA targeting the HIV-1 promoter in vitro. In this study, we show that this siRNA, expressed as a short hairpin RNA (shRNA) (shPromA-JRFL) delivered by lentiviral transduction of human peripheral blood mononuclear cells (PBMCs), which are then used to reconstitute NOJ mice, is able to inhibit HIV-1 replication in vivo, whereas a three-base mismatched variant (shPromA-M2) does not. In shPromA-JRFL-treated mice, HIV-1 RNA in serum is significantly reduced, and the ratio of CD4(+)/CD8(+) T cells is significantly elevated. Expression levels of the antisense RNA strand inversely correlates with HIV-1 RNA in serum. The silenced HIV-1 can be reactivated by T-cell activation in ex vivo cultures. HIV-1 suppression is not due to offtarget effects of shPromA-JRFL. These data provide "proof-of principle" that an shRNA targeting the HIV-1 promoter is able to suppress HIV-1 replication in vivo.Molecular Therapy-Nucleic Acids (2013) 2, e137; doi:10.1038/mtna.2013.64; published online 3 December 2013.

6.
Viruses ; 6(1): 54-68, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24381033

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) infection of target cells requires CD4 and a co-receptor, predominantly the chemokine receptor CCR5. CCR5-delta32 homozygosity results in a truncated protein providing natural protection against HIV infection-this without detrimental effects to the host-and transplantation of CCR5-delta32 stem cells in a patient with HIV ("Berlin patient") achieved viral eradication. As a more feasible approach gene-modification strategies are being developed to engineer cellular resistance to HIV using autologous cells. We have developed a dual therapeutic anti-HIV lentiviral vector (LVsh5/C46) that down-regulates CCR5 and inhibits HIV-1 fusion via cell surface expression of the gp41-derived peptide, C46. This construct, effective against multiple strains of both R5- and X4-tropic HIV-1, is being tested in Phase I/II trials by engineering HIV-resistant hematopoietic cells.


Subject(s)
CCR5 Receptor Antagonists , Genetic Therapy/methods , HIV Infections/therapy , HIV-1/physiology , Receptors, HIV/antagonists & inhibitors , Recombinant Fusion Proteins/biosynthesis , Biological Therapy/methods , Clinical Trials as Topic , HIV Infections/virology , HIV-1/immunology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/physiology , Hematopoietic Stem Cells/virology , Humans , Receptors, CCR5/biosynthesis , Receptors, HIV/biosynthesis , Recombinant Fusion Proteins/genetics
7.
Immunol Res ; 48(1-3): 84-98, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20737298

ABSTRACT

HIV/AIDS is a disease that impairs immune function, primarily by decreasing T-lymphocyte count. Its progression can be contained by highly active antiretroviral therapy (HAART), but there are side effects that can be severe, and the development of resistance often forces the physician to modify the HAART regimen. There are no vaccines available for HIV. An alternative approach that could provide a path to a curative therapy is the use of cell-delivered gene therapy in which an anti-HIV gene(s) is introduced into hematopoietic cells to produce a population that is protected from the effects of HIV. In this paper, we review the field and discuss an approach using a short hairpin RNA to CCR5, an important co-receptor for HIV.


Subject(s)
HIV Infections/therapy , HIV/physiology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , RNA, Small Interfering/therapeutic use , Receptors, CCR5/metabolism , Receptors, HIV/metabolism , Animals , Clinical Trials as Topic , Disease Models, Animal , Genes, Viral/genetics , Genetic Therapy/trends , HIV/pathogenicity , HIV Infections/genetics , HIV Infections/immunology , Hematopoietic Stem Cells/pathology , Humans , Mice , RNA, Small Interfering/genetics , Receptors, CCR5/genetics , Receptors, HIV/genetics , Virus Replication/genetics
8.
Virol J ; 6: 184, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19878571

ABSTRACT

BACKGROUND: Multiple short hairpin RNA (shRNA) gene therapy strategies are currently being investigated for treating viral diseases such as HIV-1. It is important to use several different shRNAs to prevent the emergence of treatment-resistant strains. However, there is evidence that repeated expression cassettes delivered via lentiviral vectors may be subject to recombination-mediated repeat deletion of 1 or more cassettes. RESULTS: The aim of this study was to determine the frequency of deletion for 2 to 6 repeated shRNA cassettes and mathematically model the outcomes of different frequencies of deletion in gene therapy scenarios. We created 500+ clonal cell lines and found deletion frequencies ranging from 2 to 36% for most combinations. While the central positions were the most frequently deleted, there was no obvious correlation between the frequency or extent of deletion and the number of cassettes per combination. We modeled the progression of infection using combinations of 6 shRNAs with varying degrees of deletion. Our in silico modeling indicated that if at least half of the transduced cells retained 4 or more shRNAs, the percentage of cells harboring multiple-shRNA resistant viral strains could be suppressed to < 0.1% after 13 years. This scenario afforded a similar protection to all transduced cells containing the full complement of 6 shRNAs. CONCLUSION: Deletion of repeated expression cassettes within lentiviral vectors of up to 6 shRNAs can be significant. However, our modeling showed that the deletion frequencies observed here for 6x shRNA combinations was low enough that the in vivo suppression of replication and escape mutants will likely still be effective.


Subject(s)
Genetic Therapy/methods , HIV Infections/therapy , HIV-1/genetics , Mutagenesis, Insertional/methods , RNA, Small Interfering/genetics , Sequence Deletion , Computer Simulation , Humans
9.
PLoS One ; 4(7): e6461, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19649289

ABSTRACT

BACKGROUND: Hematopoietic stem cells (HSC), in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multi-potency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34(+) HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin. METHODOLOGY/PRINCIPAL FINDINGS: Using commercially available G-CSF mobilized peripheral blood (PB) CD34(+) cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, pre-stimulation time, multiplicity of infection (MOI), transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV) carrying enhanced green fluorescent protein (GFP) was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin. CONCLUSIONS/SIGNIFICANCE: This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34(+) cells.


Subject(s)
Antigens, CD34/immunology , Genetic Vectors , Hematopoietic Stem Cells/immunology , Lentivirus/genetics , Transduction, Genetic , Blood , Cells, Cultured , Culture Media, Serum-Free , Granulocyte Colony-Stimulating Factor/administration & dosage , Humans
10.
J Gene Med ; 7(5): 552-64, 2005 May.
Article in English | MEDLINE | ID: mdl-15655805

ABSTRACT

BACKGROUND: An anti-HIV-1 tat ribozyme, termed Rz2, has been shown to inhibit HIV-1 infection/replication and to decrease HIV-1-induced pathogenicity in T-lymphocyte cell lines and normal peripheral blood T-lymphocytes. We report here the results of a phase I gene transfer clinical trial using Rz2. METHODS: Apheresis was used to obtain a peripheral blood cell population from each of four HIV-negative donors. After enrichment for CD4+ T-lymphocytes, ex vivo expansion and genetic manipulation (approximately equal aliquots of the cells were transduced with the ribozyme-containing (RRz2) and the control (LNL6) retroviral vector), these cells were infused into the corresponding HIV-1-positive twin recipient. Marking was assessed over an initial 24-week period and in total over an approximate 4-year period. RESULTS: The gene transfer procedure was shown to be safe, and technically feasible. Both RRz2- and LNL6-gene-containing peripheral blood mononuclear cells (PBMC) were detected at all time points examined to 4 years. There was concomitant gene construct expression in the absence of the need for ex vivo peripheral blood cell stimulation and there was no evidence of immune elimination of the neoR T-lymphocytes nor of silencing of the Moloney murine leukemia virus long terminal repeat. CONCLUSIONS: The proof of principle results reported here demonstrate safety and feasibility of this type of gene transfer approach. While not specifically tested, T-lymphocytes containing an anti-HIV gene construct may impact on HIV-1 viral load and CD4+ T-lymphocyte count, potentially representing a new therapeutic modality for HIV-1 infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Diseases in Twins/therapy , Genetic Therapy , HIV Infections/therapy , HIV-1 , RNA, Catalytic/pharmacology , Transduction, Genetic , Adult , CD4 Lymphocyte Count , Diseases in Twins/immunology , Gene Expression , Genes, tat/physiology , Genetic Vectors , HIV Infections/immunology , Humans , Male , Middle Aged , RNA, Catalytic/genetics , Retroviridae/genetics , Survival Rate , Time Factors , Twins, Monozygotic
11.
Methods Mol Biol ; 252: 581-98, 2004.
Article in English | MEDLINE | ID: mdl-15017082

ABSTRACT

Antiretroviral drug therapy can effectively reduce the viral load, and is associated with a degree of immune reconstitution in human immunodeficiency virus (HIV)-infected patients. However, the presence of a latent viral reservoir, the development of drug resistance, drug toxicity, and compliance problems are obstacles that impede full eradication of HIV through drug therapy. The cellular introduction of genetic elements that are capable of inhibiting HIV replication is conceptually appealing as a potential new treatment paradigm for acquired immunodeficiency syndrome (AIDS). In theory, this approach can lead to the development of regenerated hematopoiesis with cells that inhibit viral replication and are protected from the pathogenic effects of HIV. Ribozymes are catalytic RNA molecules that can efficiently and selectively cleave target RNA. By ex vivo retroviral transduction, we have introduced a HIV-1 tat gene-targeted ribozyme (RRz2) and a control construct (LNL6) into granulocyte-colony-stimulating factor (G-CSF) mobilized CD34+ hematopoietic progenitor cells (HPC). Transduced autologous CD34+ cells (an approximately equal mix of RRz2 and LNL6) were infused in 10 patients in this Phase I study. After a median follow-up of 2.5 yr, gene presence and expression were detected by a sensitive polymerase chain reaction (PCR) assay in a transduced-CD34+ cell dose-dependent manner. In this chapter, we describe general considerations related to HIV hematopoietic progenitor-cell gene therapy trial design, implementation, and safety, with an emphasis on the critical steps of this process, namely vector production and characterization, target-cell selection, transduction, final product release testing, and evaluation of vector presence.


Subject(s)
Acquired Immunodeficiency Syndrome/drug therapy , Genetic Therapy/methods , HIV Infections/drug therapy , RNA, Catalytic/therapeutic use , Antigens, CD/blood , Antigens, CD34/blood , Base Sequence , Gene Transfer Techniques , Humans , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/toxicity , Stem Cell Transplantation , Transplantation, Autologous
12.
Methods Mol Biol ; 252: 599-616, 2004.
Article in English | MEDLINE | ID: mdl-15017083

ABSTRACT

The implementation of a hematopoietic progenitor-cell gene-therapy program involves the performance of laboratory procedures and compliance with the current code of Good Manufacturing Practices. This chapter explains the multiple laboratory steps used in our recent Phase I gene transfer study for HIV. This study employed a retroviral vector to deliver an anti-HIV ribozyme to CD34+ hematopoietic progenitor cells.


Subject(s)
Genetic Therapy/methods , Genetic Therapy/standards , Genetic Vectors , RNA, Catalytic/therapeutic use , Stem Cell Transplantation/methods , Hematopoietic Stem Cell Mobilization/methods , Humans , Transplantation, Autologous/methods , Transplantation, Autologous/standards
13.
Hum Gene Ther ; 15(3): 251-62, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15018734

ABSTRACT

A phase I gene transfer clinical study was undertaken to examine the ability to introduce a potential anti-human immunodeficiency virus (HIV) gene therapeutic into hematopoietic progenitor cells (HPC), thereby contributing to multilineage engraftment. The potential therapeutic effect of genetically modifying HPC with protective genes in HIV-infected adults depends in part on the presence of adult thymic activity and myeloid capacity in the setting of HIV replication. Herein we report the presence and expression of a retroviral vector encoding an anti-HIV-1 ribozyme in mature hematopoietic cells of different lineages, and de novo T-lymphocyte development ensuing from genetically engineered CD34(+) HPC. Sustained output of vector-containing mature myeloid and T-lymphoid cells was detected even in patients with multidrug-resistant infection. In addition, the study showed that the degree of persistence of gene-containing cells was dependent on transduced HPC dose. These novel findings support the concept of gene therapy as a modality to effect immune reconstitution with cells engineered to inhibit HIV replication and this report represents the first demonstration of long-term maintenance of a potential therapeutic transgene in HIV disease.


Subject(s)
Anti-HIV Agents , Genetic Therapy/methods , HIV Infections/immunology , HIV-1 , Hematopoietic Stem Cell Transplantation , RNA, Catalytic/genetics , Adult , Antigens, CD34/analysis , CD4-Positive T-Lymphocytes/metabolism , Female , Gene Expression , Gene Transfer Techniques , Genetic Vectors , HIV Infections/therapy , HIV-1/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/enzymology , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Middle Aged , Myeloid Cells/cytology , Polymerase Chain Reaction , Retroviridae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...