Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; (12): 1602-14, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18335144

ABSTRACT

The reactions of boron halides with free base porphyrins under conditions where partial hydrolysis of the boron halides can occur give diboron porphyrin complexes containing BOB moieties in which each boron is bonded to two porphyrin nitrogen atoms. BF(3).OEt(2) with H(2)(por) gives B(2)OF(2)(por) (por = tpp, ttp, tpClpp, oep) which has an asymmetric structure in which one boron lies in the porphyrin plane (B(ip)) while the other lies above it (B(oop)). BCl(3).MeCN with H(2)(por) gives B(2)O(2)(BCl(3))(2)(por) which contains a four-membered B(2)O(2) ring and is stable only in the presence of excess BCl(3). BBr(3) with Li(2)(tpClpp) gives the dicationic complex [B(2)O(tpClpp)](2+) as its [BBr(4)](-) salt, and is the first example of a boron porphyrin containing three-coordinate boron to be structurally characterised. B(2)O(2)(BCl(3))(2)(por) can be chromatographed on basic alumina to give the hydroxyboron complex B(2)O(OH)(2)(por), which is deduced from its NMR spectra and DFT calculations to have a structure analogous to B(2)OF(2)(por). The OH protons are shifted upfield to near delta -4 (B(oop)-OH) and -10 (B(ip)-OH) by the diamagnetic porphyrin ring current. The reaction of either B(2)O(2)(BCl(3))(2)(por) or B(2)O(OH)(2)(por) (por = ttp, tpClpp) with alcohols (ROH, R = Et, 4-C(6)H(4)CH(3)) gives B(2)O(OR)(2)(por), which can in turn be converted to B(2)O(OR)(OH)(por) by repeated chromatography. The reaction of PhBCl(2) with H(2)(por) (por = ttp, tpClpp) gives B(2)O(Ph)(OH)(por) which has been characterised by spectroscopy in concert with DFT calculations. It is a further example of the B(2)OF(2)(por) structural type, in which the phenyl group is coordinated to the out-of-plane boron and the OH group to the in-plane boron, as are its derivatives B(2)O(Ph)(X)(tpClpp) (X = F, OEt). Steric drivers for the facile hydrolysis of haloboron porphyrins relative to their dipyrromethene and expanded porphyrin counterparts are discussed.


Subject(s)
Boron Compounds/chemistry , Porphyrins/chemistry , Boranes/chemistry , Boron Compounds/chemical synthesis , Chlorides/chemistry , Hydrolysis , Models, Molecular , Molecular Conformation , Molecular Structure , Porphyrins/chemical synthesis
2.
Inorg Chem ; 40(3): 499-506, 2001 Jan 29.
Article in English | MEDLINE | ID: mdl-11209607

ABSTRACT

Atom and group transfer reactions were found to occur between heterocumulenes and (TTP)Ti(eta 2-3-hexyne), 1 (TTP = meso-5,10,15,20-tetra-p-tolylporphyrinato dianion). The imido derivatives (TTP)Ti=NR (R = iPr, 2; tBu, 3) were produced upon treatment of complex 1 with iPrN=C=NiPr, iPrNCO, or tBuNCO. Reactions between complex 1 and CS2, tBuNCS, or tBuNCSe afforded the chalcogenido complexes, (TTP)Ti=Ch (Ch = Se, 4; S, 5). Treatment of complex 1 with 2 equiv of PEt3 yielded the bis(phosphine) complex, (TTP)Ti(PEt3)2, 6. Although (TTP)Ti(eta 2-3-hexyne) readily abstracts oxygen from epoxides and sulfoxides, the reaction between 1 and O=P(Oct)3 did not result in oxygen atom transfer. Instead, the paramagnetic titanium(II) derivative (TTP)Ti[O=P(Oct)3]2, 7, was formed. The molecular structure of complex 7 was determined by single-crystal X-ray diffraction: Ti-O distance 2.080(2) A and Ti-O-P angle of 138.43(10) degrees. Estimates of Ti=O, Ti=S, Ti=Se, and Ti=NR bond strengths are discussed.

3.
J Med Chem ; 34(2): 491-6, 1991 Feb.
Article in English | MEDLINE | ID: mdl-1995870

ABSTRACT

A series of tricyclic analogues of 9-oxo-9H-xanthene-4-acetic acid have been prepared and evaluated for their ability to cause hemorrhagic necrosis in subcutaneously implanted colon 38 tumors in mice, in an effort to extend the structure-activity relationships for this series. As was found previously with analogues of flavone-8-acetic acid (FAA) (Atwell et al. Anti-Cancer Drug Des. 1989, 4, 161), all electronic modifications of the XAA nucleus led to severe decreases or complete abolition of activity, suggesting narrow structure-activity relationships. Dipole moments for many of the compounds were computed, and the degree to which the molecular dipole moment lay out of the plane of the aromatic part of these molecules was found to be determined largely by the contributions from the acetic acid moiety relative to that from the tricyclic ring system. There did not appear to be any general relationship between the magnitude of the dipole moment and activity. However, for compounds containing the 9-carbonyl functionality, the orientation of the dipole vector may be of significance. In all compounds possessing an ether group peri to the acetic acid side chain, there was a close approach (ca. 2.4 A) between this and the side chain OH.


Subject(s)
Antineoplastic Agents/chemical synthesis , Xanthenes/chemical synthesis , Animals , Antineoplastic Agents/therapeutic use , Chemical Phenomena , Chemistry , Colonic Neoplasms/drug therapy , Mice , Neoplasm Transplantation , Structure-Activity Relationship , Xanthenes/therapeutic use
4.
J Inorg Biochem ; 24(3): 199-209, 1985 Jul.
Article in English | MEDLINE | ID: mdl-2995579

ABSTRACT

A binuclear complex has been produced by the reaction of an iron porphyrin (sodium tetra-p-sulfophenylporphine iron (III)-FeTPPS) with a copper metallo-tripeptide (copper (II) glycylglycyl-L-histidine-N-methylamide-CuGGH) in aqueous solution. The system has been characterized by electron spin resonance (ESR) spectroscopy, optical absorption spectroscopy, and electrochemical methods. Room-temperature ESR spectra of the copper complex and low-temperature ESR spectra of the iron porphine provide evidence for the formation of a binuclear complex. These findings are supported by absorption spectroscopy and electrochemical studies, and lead to a value of ca. 2 X 10(-3) M-1 (at room temperature) for the equilibrium constant for complex formation. The relevance of this system to the enzymic active site of mammalian cytochrome c oxidase is discussed.


Subject(s)
Electron Transport Complex IV/metabolism , Metalloporphyrins/chemical synthesis , Organometallic Compounds/chemical synthesis , Peptides, Cyclic/chemical synthesis , Binding Sites , Copper , Electrochemistry , Electron Spin Resonance Spectroscopy , Kinetics , Models, Biological , Polarography , Porphyrins/chemical synthesis , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...