Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38659829

ABSTRACT

Pharmacologic or genetic manipulation of O-GlcNAcylation, an intracellular, single sugar post-translational modification, are difficult to interpret due to the pleotropic nature of O-GlcNAc and the vast signaling pathways it regulates. To address this issue, we employed either OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) liver knockouts, or pharmacological inhibition of OGA coupled with multi-Omics analysis and bioinformatics. We identified numerous genes, proteins, phospho-proteins, or metabolites that were either inversely or equivalently changed between conditions. Moreover, we identified pathways in OGT knockout samples associated with increased aneuploidy. To test and validate these pathways, we induced liver growth in OGT knockouts by partial hepatectomy. OGT knockout livers showed a robust aneuploidy phenotype with disruptions in mitosis, nutrient sensing, protein metabolism/amino acid metabolism, stress response, and HIPPO signaling demonstrating how OGT is essential in controlling aneuploidy pathways. Moreover, these data show how a multi-Omics platform can discern how OGT can synergistically fine-tune multiple cellular pathways.

2.
BMC Bioinformatics ; 24(1): 277, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415126

ABSTRACT

BACKGROUND: Molecular interaction networks have become an important tool in providing context to the results of various omics experiments. For example, by integrating transcriptomic data and protein-protein interaction (PPI) networks, one can better understand how the altered expression of several genes are related with one another. The challenge then becomes how to determine, in the context of the interaction network, the subset(s) of genes that best captures the main mechanisms underlying the experimental conditions. Different algorithms have been developed to address this challenge, each with specific biological questions in mind. One emerging area of interest is to determine which genes are equivalently or inversely changed between different experiments. The equivalent change index (ECI) is a recently proposed metric that measures the extent to which a gene is equivalently or inversely regulated between two experiments. The goal of this work is to develop an algorithm that makes use of the ECI and powerful network analysis techniques to identify a connected subset of genes that are highly relevant to the experimental conditions. RESULTS: To address the above goal, we developed a method called Active Module identification using Experimental data and Network Diffusion (AMEND). The AMEND algorithm is designed to find a subset of connected genes in a PPI network that have large experimental values. It makes use of random walk with restart to create gene weights, and a heuristic solution to the Maximum-weight Connected Subgraph problem using these weights. This is performed iteratively until an optimal subnetwork (i.e., active module) is found. AMEND was compared to two current methods, NetCore and DOMINO, using two gene expression datasets. CONCLUSION: The AMEND algorithm is an effective, fast, and easy-to-use method for identifying network-based active modules. It returned connected subnetworks with the largest median ECI by magnitude, capturing distinct but related functional groups of genes. Code is freely available at https://github.com/samboyd0/AMEND .


Subject(s)
Protein Interaction Mapping , Protein Interaction Maps , Protein Interaction Mapping/methods , Algorithms , Gene Expression Profiling/methods , Transcriptome , Gene Regulatory Networks
3.
J Rural Health ; 38(4): 865-875, 2022 09.
Article in English | MEDLINE | ID: mdl-35384064

ABSTRACT

PURPOSE: How care delivery influences urban-rural disparities in cancer outcomes is unclear. We sought to understand community oncologists' practice settings to inform cancer care delivery interventions. METHODS: We conducted secondary analysis of a national dataset of providers billing Medicare from June 1, 2019 to May 31, 2020 in 13 states in the central United States. We used Kruskal-Wallis rank and Fisher's exact tests to compare physician characteristics and practice settings among rural and urban community oncologists. FINDINGS: We identified 1,963 oncologists practicing in 1,492 community locations; 67.5% practiced in exclusively urban locations, 11.3% in exclusively rural locations, and 21.1% in both rural and urban locations. Rural-only, urban-only, and urban-rural spanning oncologists practice in an average of 1.6, 2.4, and 5.1 different locations, respectively. A higher proportion of rural community sites were solo practices (11.7% vs 4.0%, P<.001) or single specialty practices (16.4% vs 9.4%, P<.001); and had less diversity in training environments (86.5% vs 67.8% with <2 medical schools represented, P<.001) than urban community sites. Rural multispecialty group sites were less likely to include other cancer specialists. CONCLUSIONS: We identified 2 potentially distinct styles of care delivery in rural communities, which may require distinct interventions: (1) innovation-isolated rural oncologists, who are more likely to be solo providers, provide care at few locations, and practice with doctors with similar training experiences; and (2) urban-rural spanning oncologists who provide care at a high number of locations and have potential to spread innovation, but may face high complexity and limited opportunity for care standardization.


Subject(s)
Neoplasms , Professional Practice Location , Aged , Humans , Medicare , Neoplasms/epidemiology , Neoplasms/therapy , Rural Population , Specialization , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...