Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gene Ther ; 23(6): 548-56, 2016 06.
Article in English | MEDLINE | ID: mdl-27052802

ABSTRACT

Adeno-associated virus (AAV) vector-based gene therapy is a promising treatment strategy for delivery of neurotrophic transgenes to retinal ganglion cells (RGCs) in glaucoma patients. Retinal distribution of transgene expression following intravitreal injection (IVT) of AAV is variable in animal models and the vitreous humor may represent a barrier to initial vector penetration. The primary goal of our study was to investigate the effect of prior core vitrectomy with posterior hyaloid membrane peeling on pattern and efficiency of transduction of a capsid amino acid substituted AAV2 vector, carrying the green fluorescent protein (GFP) reporter transgene following IVT in dogs. When progressive intraocular inflammation developed starting 4 weeks post IVT, the study plan was modified to allow detailed characterization of the etiology as a secondary goal. Unexpectedly, surgical vitrectomy was found to significantly limit transduction, whereas in non-vitrectomized eyes transduction efficiency reached upwards to 37.3% of RGC layer cells. The developing retinitis was characterized by mononuclear cell infiltrates resulting from a delayed-type hypersensitivity reaction, which we suspect was directed at the GFP transgene. Our results, in a canine large animal model, support caution when considering surgical vitrectomy before IVT for retinal gene therapy in patients, as prior vitrectomy appears to significantly reduce transduction efficiency and may predispose the patient to development of vector-induced immune reactions.


Subject(s)
Dependovirus/genetics , Vitrectomy , Animals , Dogs , Genetic Vectors , Green Fluorescent Proteins/genetics , Humans , Retina/metabolism , Transduction, Genetic , Transgenes
3.
Gene Ther ; 23(2): 223-30, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26467396

ABSTRACT

Delivery of therapeutic transgenes to retinal photoreceptors using adeno-associated virus (AAV) vectors has traditionally required subretinal injection. Recently, photoreceptor transduction efficiency following intravitreal injection (IVT) has improved in rodent models through use of capsid-mutant AAV vectors; but remains limited in large animal models. Thickness of the inner limiting membrane (ILM) in large animals is thought to impair retinal penetration by AAV. Our study compared two newly developed AAV vectors containing multiple capsid amino acid substitutions following IVT in dogs. The ability of two promoter constructs to restrict reporter transgene expression to photoreceptors was also evaluated. AAV vectors containing the interphotoreceptor-binding protein (IRBP) promoter drove expression exclusively in rod and cone photoreceptors, with transduction efficiencies of ~4% of cones and 2% of rods. Notably, in the central region containing the cone-rich visual streak, 15.6% of cones were transduced. Significant regional variation existed, with lower transduction efficiencies in the temporal regions of all eyes. This variation did not correlate with ILM thickness. Vectors carrying a cone-specific promoter failed to transduce a quantifiable percentage of cone photoreceptors. The newly developed AAV vectors containing the IRBP promoter were capable of producing photoreceptor-specific transgene expression following IVT in the dog.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors , Photoreceptor Cells, Vertebrate/metabolism , Animals , Dogs , Enhancer Elements, Genetic , Eye Proteins/genetics , Eye Proteins/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Intravitreal Injections , Promoter Regions, Genetic , Retina/metabolism , Transduction, Genetic
4.
Gene Ther ; 20(8): 824-33, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23344065

ABSTRACT

Usher 1 patients are born profoundly deaf and then develop retinal degeneration. Thus they are readily identified before the onset of retinal degeneration, making gene therapy a viable strategy to prevent their blindness. Here, we have investigated the use of adeno-associated viruses (AAVs) for the delivery of the Usher 1B gene, MYO7A, to retinal cells in cell culture and in Myo7a-null mice. MYO7A cDNA, under control of a smCBA promoter, was packaged in single AAV2 and AAV5 vectors and as two overlapping halves in dual AAV2 vectors. The 7.9-kb smCBA-MYO7A exceeds the capacity of an AAV vector; packaging of such oversized constructs into single AAV vectors may involve fragmentation of the gene. Nevertheless, the AAV2 and AAV5 single vector preparations successfully transduced photoreceptor and retinal pigment epithelium cells, resulting in functional, full-length MYO7A protein and correction of mutant phenotypes, suggesting successful homologous recombination of gene fragments. With discrete, conventional-sized dual AAV2 vectors, full-length MYO7A was detected, but the level of protein expression was variable, and only a minority of cells showed phenotype correction. Our results show that MYO7A therapy with AAV2 or AAV5 single vectors is efficacious; however, the dual AAV2 approach proved to be less effective.


Subject(s)
Genetic Therapy , Myosins/genetics , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Usher Syndromes/therapy , Animals , DNA, Complementary , Dependovirus , Gene Expression , Gene Transfer Techniques , Green Fluorescent Proteins/genetics , Humans , Mice , Myosin VIIa , Myosins/metabolism , Retina/pathology , Retinal Degeneration/pathology , Usher Syndromes/genetics , Usher Syndromes/pathology
5.
Gene Ther ; 17(9): 1162-74, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20428215

ABSTRACT

A prerequisite for using corrective gene therapy to treat humans with inherited retinal degenerative diseases that primarily affect rods is to develop viral vectors that target specifically this population of photoreceptors. The delivery of a viral vector with photoreceptor tropism coupled with a rod-specific promoter is likely to be the safest and most efficient approach to target expression of the therapeutic gene to rods. Three promoters that included a fragment of the proximal mouse opsin promoter (mOP), the human G-protein-coupled receptor protein kinase 1 promoter (hGRK1), or the cytomegalovirus immediate early enhancer combined with the chicken ß actin proximal promoter CBA were evaluated for their specificity and robustness in driving GFP reporter gene expression in rods, when packaged in a recombinant adeno-associated viral vector of serotype 2/5 (AAV2/5), and delivered via subretinal injection to the normal canine retina. Photoreceptor-specific promoters (mOP, hGRK1) targeted robust GFP expression to rods, whereas the ubiquitously expressed CBA promoter led to transgene expression in the retinal pigment epithelium, rods, cones and rare Müller, horizontal and ganglion cells. Late onset inflammation was frequently observed both clinically and histologically with all three constructs when the highest viral titers were injected. Cone loss in the injected regions of the retinas that received the highest titers occurred with both the hGRK1 and CBA promoters. Efficient and specific rod transduction, together with preservation of retinal structure was achieved with both mOP and hGRK1 promoters when viral titers in the order of 10(11)vg ml(-1) were used.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Promoter Regions, Genetic , Retinal Rod Photoreceptor Cells/metabolism , Actins/genetics , Actins/metabolism , Animals , Dogs , G-Protein-Coupled Receptor Kinases/genetics , G-Protein-Coupled Receptor Kinases/metabolism , Genes, Reporter/genetics , Genetic Vectors/genetics , Humans , Mice , Transfection
6.
Gene Ther ; 17(7): 815-26, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20237510

ABSTRACT

To test whether fast-acting, self-complimentary (sc), adeno-associated virus-mediated RPE65 expression prevents cone degeneration and/or restores cone function, we studied two mouse lines: the Rpe65-deficient rd12 mouse and the Rpe65-deficient, rhodopsin null ('that is, cone function-only') Rpe65(-/-)::Rho(-/-) mouse. scAAV5 expressing RPE65 was injected subretinally into one eye of rd12 and Rpe65(-/-)::Rho(-/-) mice at postnatal day 14 (P14). Contralateral rd12 eyes were injected later, at P35. Rd12 behavioral testing revealed that rod vision loss was prevented with either P14 or P35 treatment, whereas cone vision was only detected after P14 treatment. Consistent with this observation, P35 treatment only restored rod electroretinogram (ERG) signals, a result likely due to reduced cone densities at this time point. For Rpe65(-/-)::Rho(-/-) mice in which there is no confounding rod contribution to the ERG signal, cone cells and cone-mediated ERGs were also maintained with treatment at P14. This work establishes that a self-complimentary AAV5 vector can restore substantial visual function in two genetically distinct models of Rpe65 deficiency within 4 days of treatment. In addition, this therapy prevents cone degeneration but only if administered before extensive cone degeneration, thus supporting continuation of current Leber's congenital amaurosis-2 clinical trials with an added emphasis on cone subtype analysis and early intervention.


Subject(s)
Carrier Proteins/physiology , Dependovirus/genetics , Eye Proteins/physiology , Genetic Therapy , Optic Atrophy, Hereditary, Leber/therapy , Retinal Cone Photoreceptor Cells/physiology , Retinal Degeneration/genetics , Retinal Degeneration/prevention & control , Animals , Disease Models, Animal , Genetic Vectors , Mice , cis-trans-Isomerases
SELECTION OF CITATIONS
SEARCH DETAIL
...