Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Phys Chem Lett ; 15(8): 2222-2227, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38373287

ABSTRACT

Ultrafast internal conversion of furan upon deep UV excitation at 200 nm is studied by using extreme ultraviolet time-resolved photoelectron spectroscopy with a time resolution of 15 fs. Ballistic nuclear wavepacket motion from the 1B2(ππ*) state to the ground state is fully observed using 21.7 eV probe pulses. Through the performance of a comparison with the results of electronic structure calculations at the MS(3)-CASPT2(10,10)/cc-pVTZ level of theory, the photoelectron signals from the conical intersection regions are identified.

2.
J Phys Chem A ; 128(5): 840-847, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38277696

ABSTRACT

Photoionization of acetylene by extreme ultraviolet light results in a stand-alone contribution from the outermost valence orbital, followed by well-separated photoelectron bands from deeper molecular orbitals. This makes acetylene an ideal candidate for probing the photoionization dynamics in polyatomic molecules free from the spectral congestion often arising after interaction with an attosecond pulse train. Here, using an angle-resolved attosecond interferometric technique, we extract the photoionization time delays for the outermost valence orbital in acetylene relative to an atomic target, namely argon. Compared to argon, the photoemission from the acetylene molecule is found to be advanced by almost 28 attoseconds. The strong variation of the relative photoionization time delays as a function of the photoemission angle was interpreted using an analytical model based on semiclassical approximations to be the interplay between different short-range potentials along and perpendicular to the molecular axis. Our results highlight the importance of using attosecond time-resolved measurements to probe the nonspherical nature of the molecular potential, even in the case of relatively small, linear systems.

3.
J Phys Chem Lett ; 14(11): 2758-2763, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36897645

ABSTRACT

We report ultrafast extreme ultraviolet photoelectron spectroscopy of 6-methyluracil (6mUra) and 5-fluorouracil (5FUra) in the gas phase and 6mUra and 5-fluorouridine in an aqueous environment. In the gas phase, internal conversion (IC) occurs from 1ππ* to 1nπ* states in tens of femtoseconds, followed by intersystem crossing to the 3ππ* state in several picoseconds. In an aqueous solution, 6mUra undergoes IC almost exclusively to the ground state (S0) in about 100 fs, which is essentially the same process as that for unsubstituted uracil, but much faster than that for thymine (5-methyluracil). The different dynamics for C5 and C6 methylation suggest that IC from 1ππ* to S0 is facilitated by out-of-plane (OOP) motion of the C5 substituent. The slow IC for C5-substituted molecules in an aqueous environment is ascribed to the solvent reorganization that is required for this OOP motion to occur. The slow rate for 5FUrd may arise in part from an increased barrier height due to C5 fluorination.

4.
Sci Rep ; 12(1): 13191, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915132

ABSTRACT

We present experiments where extreme ultraviolet femtosecond light pulses are used to photoexcite large molecular ions at high internal energy. This is done by combining an electrospray ionization source and a mass spectrometer with a pulsed light source based on high harmonic generation. This allows one to study the interaction between high energy photons and mass selected ions in conditions that are accessible on large-scale facilities. We show that even without an ion trapping device, systems as large as a protein can be studied. We observe light induced dissociative ionization and proton migration in model systems such as reserpine, insulin and cytochrome c. These results offer new perspectives to perform time-resolved experiments with ultrashort pulses at the heart of the emerging field of attosecond chemistry.


Subject(s)
Photons , Ions/chemistry
5.
J Phys Chem A ; 126(34): 5692-5701, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35994358

ABSTRACT

Following ionization by an extreme ultraviolet (XUV) attosecond pulse train, a polyatomic molecule can be promoted to more-than-one excited states of the residual ion. The ensuing relaxation dynamics is often facilitated by several reaction coordinates, making them difficult to disentangle by the usual spectroscopic means. Here, we show that in atto-chemistry isotope labeling can be an efficient tool for unraveling the relaxation pathways in highly excited photoionized molecules. Employing an XUV pump pulse and a near-infrared probe pulse, we found the nuclear as well as coupled electron-nuclear dynamics in ethylene to be almost 40% faster compared to that of its deuterated counterpart. The findings, which are supported by advanced nonadiabatic dynamics calculations, led to the identification of the relevant nuclear coordinates controlling the relaxation. Our experiment highlights the relevance of ultrashort XUV pulses to capture the isotopic effect in few-femtosecond molecular photodynamics.

6.
Phys Chem Chem Phys ; 23(48): 27477-27483, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34870657

ABSTRACT

Unraveling ultrafast processes induced by energetic radiation is compulsory to understand the evolution of molecules under extreme excitation conditions. To describe these photo-induced processes, one needs to perform time-resolved experiments to follow in real time the dynamics induced by the absorption of light. Recent experiments have demonstrated that ultrafast dynamics on few tens of femtoseconds are expected in such situations and a very challenging task is to identify the role played by electronic and nuclear degrees of freedom, charge, energy flows and structural rearrangements. Here, we performed time-resolved XUV-IR experiments on diamondoids carbon cages, in order to decipher the processes following XUV ionization. We show that the dynamics is driven by two timescales, the first one is associated to electronic relaxation and the second one is identified as the redistribution of vibrational energy along the accessible modes, prior to the cage opening that is involved in all fragmentation mechanisms in this family of molecules.

7.
Commun Chem ; 4(1): 124, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-36697624

ABSTRACT

Ultrafast charge, energy and structural dynamics in molecules are driven by the topology of the multidimensional potential energy surfaces that determines the coordinated electronic and nuclear motion. These processes are also strongly influenced by the interaction with the molecular environment, making very challenging a general understanding of these dynamics on a microscopic level. Here we use electrospray and mass spectrometry technologies to produce isolated molecular ions with a controlled micro-environment. We measure ultrafast photo-induced ππ*-πσ* dynamics in tryptophan species in the presence of a single, charged adduct. A striking increase of the timescale by more than one order of magnitude is observed when changing the added adduct atom. A model is proposed to rationalize the results, based on the localized and delocalized effects of the adduct on the electronic structure of the molecule. These results offer perspectives to control ultrafast molecular processes by designing the micro-environment on the Angström length scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...