Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(43): 37364-37373, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30346685

ABSTRACT

In this article, we demonstrate that each functional group of ureasil organic-inorganic hybrid (OIH) materials can act as a specific coordination site for a given active guest species, hence allowing the possibility of combining different functional properties. To illustrate this concept, the sol-gel process was used to produce diurea cross-linked siloxane-polyethylene oxide (U-PEO) and siloxane-polypropylene oxide (U-PPO) hybrid host frameworks with similar molecular weights (1900 and 2000 g mol-1 for PEO and PPO, respectively), with Li+ and Eu3+ as active guest ions providing ionic conduction and photoluminescence (PL) properties, respectively. Comparison of Fourier transform infrared spectra and small-angle X-ray scattering results for single-doped (using Li+ or Eu3+) and co-doped (using Li+ and Eu3+) U-PEO and U-PPO hosts showed that in every case, there was specific coordination of Eu3+ by the carbonyl group of the urea bridge and of Li+ by ether-type oxygen of the PEO and PPO chains. Optical analyses demonstrated that loading with Li+ did not affect the luminescence properties of the Eu3+-loaded OIH. Although loading with Eu3+ had a small effect on ionic transport, co-doping with Li+ ions ensured macroscopic ion-conduction of the transparent and luminescent hybrid material. The results suggested that the combination of both properties in a transparent elastomeric material could be useful for the development of multifunctional devices. The results suggested that the combination of both properties in a transparent elastomeric material could be useful for the development of multifunctional polyelectrolytes applied in the field of dual luminescent devices such as photoelectrochromic smart windows.

2.
Int J Mol Sci ; 10(9): 4088-4101, 2009 Sep 17.
Article in English | MEDLINE | ID: mdl-19865533

ABSTRACT

Transparent BaTiO(3):Eu(3+) films were prepared via a sol-gel method and dip-coating technique, using barium acetate, titanium butoxide, and polyvinylpyrrolidone (PVP) as modifier viscosity. BaTiO(3):Eu(3+) films ~500 nm thick, crystallized after thermal treatment at 700 masculineC. The powders revealed spherical and rod shape morphology. The optical quality of films showed a predominant band at 615 nm under 250 nm excitation. A preliminary luminescent test provided the properties of the Eu(3+) doped BaTiO(3).


Subject(s)
Barium Compounds/chemistry , Europium/chemistry , Povidone/chemistry , Titanium/chemistry , Luminescence , Phase Transition , Powder Diffraction , Powders , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL