Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Brain Res ; 238(4): 1011-1024, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32198542

ABSTRACT

Most studies on the regulation of speed and trajectory during ellipse drawing have used visual feedback. We used online auditory feedback (sonification) to induce implicit movement changes independently from vision. The sound was produced by filtering a pink noise with a band-pass filter proportional to movement speed. The first experiment was performed in 2D. Healthy participants were asked to repetitively draw ellipses during 45 s trials whilst maintaining a constant sonification pattern (involving pitch variations during the cycle). Perturbations were produced by modifying the slope of the mapping without informing the participants. All participants adapted spontaneously their speed: they went faster if the slope decreased and slower if it increased. Higher velocities were achieved by increasing both the frequency of the movements and the perimeter of the ellipses, but slower velocities were achieved mainly by decreasing the perimeter of the ellipses. The shape and the orientation of the ellipses were not significantly altered. The analysis of the speed-curvature power law parameters showed consistent modulations of the speed gain factor, while the exponent remained stable. The second experiment was performed in 3D and showed similar results, except that the main orientation of the ellipse also varied with the changes in speed. In conclusion, this study demonstrated implicit modulation of movement speed by sonification and robust stability of the ellipse geometry. Participants appeared to limit the decrease in movement frequency during slowing down to maintain a rhythmic and not discrete motor regimen.


Subject(s)
Auditory Perception/physiology , Feedback, Sensory/physiology , Motor Activity/physiology , Psychomotor Performance/physiology , Time Perception/physiology , Adult , Female , Humans , Male , Pitch Perception/physiology , Young Adult
2.
Front Neurosci ; 11: 197, 2017.
Article in English | MEDLINE | ID: mdl-28487626

ABSTRACT

As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM) can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

3.
Exp Brain Res ; 235(3): 691-701, 2017 03.
Article in English | MEDLINE | ID: mdl-27858128

ABSTRACT

The use of continuous auditory feedback for motor control and learning is still understudied and deserves more attention regarding fundamental mechanisms and applications. This paper presents the results of three experiments studying the contribution of task-, error-, and user-related sonification to visuo-manual tracking and assessing its benefits on sensorimotor learning. First results show that sonification can help decreasing the tracking error, as well as increasing the energy in participant's movement. In the second experiment, when alternating feedback presence, the user-related sonification did not show feedback dependency effects, contrary to the error and task-related feedback. In the third experiment, a reduced exposure of 50% diminished the positive effect of sonification on performance, whereas the increase of the average energy with sound was still significant. In a retention test performed on the next day without auditory feedback, movement energy was still superior for the groups previously trained with the feedback. Although performance was not affected by sound, a learning effect was measurable in both sessions and the user-related group improved its performance also in the retention test. These results confirm that a continuous auditory feedback can be beneficial for movement training and also show an interesting effect of sonification on movement energy. User-related sonification can prevent feedback dependency and increase retention. Consequently, sonification of the user's own motion appears as a promising solution to support movement learning with interactive feedback.


Subject(s)
Auditory Perception/physiology , Feedback, Sensory/physiology , Movement/physiology , Psychomotor Performance/physiology , Acoustic Stimulation , Adolescent , Adult , Aged , Analysis of Variance , Female , Humans , Male , Middle Aged , Photic Stimulation , Reaction Time , Young Adult
4.
Front Neurosci ; 10: 385, 2016.
Article in English | MEDLINE | ID: mdl-27610071

ABSTRACT

This article reports on an interdisciplinary research project on movement sonification for sensori-motor learning. First, we describe different research fields which have contributed to movement sonification, from music technology including gesture-controlled sound synthesis, sonic interaction design, to research on sensori-motor learning with auditory-feedback. In particular, we propose to distinguish between sound-oriented tasks and movement-oriented tasks in experiments involving interactive sound feedback. We describe several research questions and recently published results on movement control, learning and perception. In particular, we studied the effect of the auditory feedback on movements considering several cases: from experiments on pointing and visuo-motor tracking to more complex tasks where interactive sound feedback can guide movements, or cases of sensory substitution where the auditory feedback can inform on object shapes. We also developed specific methodologies and technologies for designing the sonic feedback and movement sonification. We conclude with a discussion on key future research challenges in sensori-motor learning with movement sonification. We also point out toward promising applications such as rehabilitation, sport training or product design.

5.
Article in English | MEDLINE | ID: mdl-23626532

ABSTRACT

Studies of the nature of the neural mechanisms involved in goal-directed movements tend to concentrate on the role of vision. We present here an attempt to address the mechanisms whereby an auditory input is transformed into a motor command. The spatial and temporal organization of hand movements were studied in normal human subjects as they pointed toward unseen auditory targets located in a horizontal plane in front of them. Positions and movements of the hand were measured by a six infrared camera tracking system. In one condition, we assessed the role of auditory information about target position in correcting the trajectory of the hand. To accomplish this, the duration of the target presentation was varied. In another condition, subjects received continuous auditory feedback of their hand movement while pointing to the auditory targets. Online auditory control of the direction of pointing movements was assessed by evaluating how subjects reacted to shifts in heard hand position. Localization errors were exacerbated by short duration of target presentation but not modified by auditory feedback of hand position. Long duration of target presentation gave rise to a higher level of accuracy and was accompanied by early automatic head orienting movements consistently related to target direction. These results highlight the efficiency of auditory feedback processing in online motor control and suggest that the auditory system takes advantages of dynamic changes of the acoustic cues due to changes in head orientation in order to process online motor control. How to design an informative acoustic feedback needs to be carefully studied to demonstrate that auditory feedback of the hand could assist the monitoring of movements directed at objects in auditory space.

SELECTION OF CITATIONS
SEARCH DETAIL
...