Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Am J Orthod Dentofacial Orthop ; 163(6): 737, 2023 06.
Article in English | MEDLINE | ID: mdl-37245888
2.
Am J Orthod Dentofacial Orthop ; 160(5): 732-742.e1, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34752256

ABSTRACT

INTRODUCTION: Fabrication of orthodontic aligners directly via 3-dimensional (3D) printing presents the potential to increase the efficiency of aligner production relative to traditional workflows; however tunable aspects of the 3D-printing process might affect the dimensional fidelity of the fabricated appliances. This study aimed to investigate the effect of print orientation on the dimensional accuracy of orthodontic aligners printed directly with a 3D printer. METHODS: A digitally designed aligner of 500 µm thickness was printed in 3D in Grey V4 (Formlabs, Somerville, Mass) resin at 8 angulations at 45° intervals (n = 10 per angulation) using a stereolithography 3D printer. Each aligner was scanned with an optical scanner, and all but the intaglio surface of each scan was digitally removed. Each resultant scan file was superimposed onto the isolated intaglio of the designed master aligner file. The dimensional deviation was quantified with Geomagic Control software (3D Systems, Rock Hill, SC), and data were analyzed using R statistical software (version 2018; R Core Team, Vienna, Austria) (P <0.05). RESULTS: Print angle showed a statistically significant effect on standard deviation, average positive deviation, absolute average negative deviation, and percentage of points out of bounds (tolerance bounds defined as ±250 µm) (P <0.05). Qualitative analysis of the 3D surface deviation maps indicated that the 0° and 90° groups showed less deviation and appeared to be the most accurate in the anterior regions. Overall, the majority of the print angle groups studied were not printed within clinically acceptable tolerance ranges, with the major exception being the 90° group, which printed nominally within clinically acceptable tolerance ranges. CONCLUSIONS: With the workflow applied, print orientation significantly affects the dimensional accuracy of directly 3D-printed orthodontic aligners. Within the limitations of this study, printing at the 90° angulation would be advised as it is the group with the most accurate prints relative to the 7 other orientations investigated, although not all differences were statistically significant.


Subject(s)
Printing, Three-Dimensional , Stereolithography , Humans , Software , Workflow
3.
Mol Genet Metab ; 134(3): 235-242, 2021 11.
Article in English | MEDLINE | ID: mdl-34716085

ABSTRACT

Pegvaliase (Palynziq®) is an enzyme substitution therapy using PEGylated recombinant Anabaena variabilis phenylalanine ammonia lyase (PAL) to reduce blood phenylalanine (Phe) levels in adults with phenylketonuria (PKU). In Phase 3 clinical studies, all subjects treated with pegvaliase developed anti-drug antibodies. To specifically evaluate pegvaliase-neutralizing antibodies (NAbs) and assess impact on pegvaliase efficacy, a novel hybrid ligand-binding/tandem mass spectrometry NAb assay was developed. Analysis of Phase 3 study samples revealed that pegvaliase NAb titers developed during early treatment (≤6 months after treatment initiation), and then plateaued and persisted in the majority of subjects during late treatment (>6 months). Subjects with the lowest/undetectable NAb titers had relatively high plasma pegvaliase concentrations and experienced the most rapid decline in blood Phe concentrations at relatively low pegvaliase dose concentrations. In contrast, subjects with higher NAb titers generally had lower plasma pegvaliase concentrations on similar low doses, with little change in blood Phe concentrations. However, with additional time on treatment and individualized dose titration, the majority of subjects achieved substantial and sustained blood Phe reduction, including those with higher NAb titers. Moreover, after maturation of the anti-pegvaliase immune response, NAb titers were stable over time and did not rise in response to dose increases; thus, subjects did not require additional dose increases to maintain reduction in blood Phe.


Subject(s)
Antibodies, Neutralizing/blood , Phenylalanine Ammonia-Lyase/blood , Phenylalanine Ammonia-Lyase/therapeutic use , Adult , Antibodies, Neutralizing/immunology , Humans , Phenylalanine/blood , Phenylalanine Ammonia-Lyase/adverse effects , Phenylalanine Ammonia-Lyase/immunology , Phenylketonurias/drug therapy , Recombinant Proteins/adverse effects , Recombinant Proteins/blood , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use
4.
EBioMedicine ; 37: 366-373, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30366815

ABSTRACT

BACKGROUND: This study assessed the immunogenicity of pegvaliase (recombinant Anabaena variabilis phenylalanine [Phe] ammonia lyase [PAL] conjugated with polyethylene glycol [PEG]) treatment in adults with phenylketonuria (PKU) and its impact on safety and efficacy. METHODS: Immunogenicity was assessed during induction, upward titration, and maintenance dosing regimens in adults with PKU (n = 261). Total antidrug antibodies (ADA), neutralizing antibodies, immunoglobulin (Ig) M and IgG antibodies against PAL and PEG, IgG and IgM circulating immune complex (CIC) levels, complement components 3 and 4 (C3/C4), plasma Phe, and safety were assessed at baseline and throughout the study. Pegvaliase-specific IgE levels were measured in patients after hypersensitivity adverse events (HAE). FINDINGS: All patients developed ADA against PAL, peaking by 6 months and then stabilizing. Most developed transient antibody responses against PEG, peaking by 3 months, then returning to baseline by 9 months. Binding of ADA to pegvaliase led to CIC formation and complement activation, which were highest during early treatment. Blood Phe decreased over time as CIC levels and complement activation declined and pegvaliase dosage increased. HAEs were most frequent during early treatment and declined over time. No patient with acute systemic hypersensitivity events tested positive for pegvaliase-specific IgE near the time of the event. Laboratory evidence was consistent with immune complex-mediated type III hypersensitivity. No evidence of pegvaliase-associated IC-mediated end organ damage was noted. INTERPRETATION: Despite a universal ADA response post-pegvaliase administration, adult patients with PKU achieved substantial and sustained blood Phe reductions with a manageable safety profile. FUND: BioMarin Pharmaceutical Inc.


Subject(s)
Antibodies , Antigen-Antibody Complex , Drug Hypersensitivity , Phenylalanine Ammonia-Lyase , Phenylketonurias , Recombinant Proteins , Adult , Antibodies/blood , Antibodies/immunology , Antigen-Antibody Complex/blood , Antigen-Antibody Complex/immunology , Complement C3/immunology , Complement C3/metabolism , Complement C4/immunology , Complement C4/metabolism , Drug Hypersensitivity/blood , Drug Hypersensitivity/immunology , Female , Humans , Male , Phenylalanine/blood , Phenylalanine/immunology , Phenylalanine Ammonia-Lyase/administration & dosage , Phenylalanine Ammonia-Lyase/adverse effects , Phenylketonurias/blood , Phenylketonurias/drug therapy , Phenylketonurias/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects
5.
Eur J Hum Genet ; 26(10): 1441-1450, 2018 10.
Article in English | MEDLINE | ID: mdl-29899370

ABSTRACT

Orofacial development is a multifaceted process involving tightly regulated genetic signaling networks, that when perturbed, lead to orofacial abnormalities including cleft lip and/or cleft palate. We and others have shown an association between the cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2) gene and nonsyndromic cleft lip with or without cleft palate (NSCLP). Further, we demonstrated that knockdown of Crispld2 in zebrafish alters neural crest cell migration patterns resulting in abnormal jaw and palate development. In this study, we performed RNA profiling in zebrafish embryos and identified 249 differentially expressed genes following knockdown of Crispld2. In silico pathway analysis identified a network of seven genes previously implicated in orofacial development for which differential expression was validated in three of the seven genes (CASP8, FOS, and MMP2). Single nucleotide variant (SNV) genotyping of these three genes revealed significant associations between NSCLP and FOS/rs1046117 (GRCh38 chr14:g.75746690 T > C, p = 0.0005) in our nonHispanic white (NHW) families and MMP2/rs243836 (GRCh38 chr16:g.55534236 G > A; p = 0.002) in our Hispanic families. Nominal association was found between NSCLP and CASP8/rs3769825 (GRCh38 chr2:g.202111380 C > A; p < 0.007). Overtransmission of MMP2 haplotypes were identified in the Hispanic families (p < 0.002). Significant gene-gene interactions were identified for FOS-MMP2 in the NHW families and for CASP8-FOS in the NHW simplex family subgroup (p < 0.004). Additional in silico analysis revealed a novel gene regulatory network including five of these newly identified and 23 previously reported NSCLP genes. Our results demonstrate that animal models of orofacial clefting can be powerful tools to identify novel candidate genes and gene regulatory networks underlying NSCLP.


Subject(s)
Cleft Lip/genetics , Cleft Palate/genetics , Genetic Predisposition to Disease , Glycoproteins/genetics , Zebrafish Proteins/genetics , Animals , Cleft Lip/pathology , Cleft Palate/pathology , Epistasis, Genetic , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Genotype , Haplotypes , Humans , Polymorphism, Single Nucleotide , Zebrafish
6.
Virol J ; 7: 359, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21129204

ABSTRACT

The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and crystallization of complexes is a significant challenge. We discuss alternate approaches, such as small angle X-ray and neutron scattering to generate molecular envelopes for modeling macromolecular assemblies.


Subject(s)
Bacteriophage T4/chemistry , Bacteriophage T4/physiology , DNA Replication , Viral Proteins/chemistry , Viral Proteins/metabolism , Bacteriophage T7/chemistry , Crystallography, X-Ray , Macromolecular Substances/chemistry , Models, Biological , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Scattering, Small Angle
7.
AAPS J ; 10(3): 439-49, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18709516

ABSTRACT

Most patients receiving Naglazyme (galsulfase, rhASB) enzyme replacement therapy for mucopolysaccharidosis type VI develop an antibody response. To evaluate the impact of this response, two in vitro neutralizing antibody (NAb) assays were developed based on the two steps of the mechanism of action. Neutralization of enzyme activity was detected by inhibition of rhASB cleavage of a fluorogenic substrate. Neutralization of receptor binding was detected by decreased binding of labeled rhASB to immobilized soluble receptor. For the enzyme activity NAb assay, serum pretreatment was required to isolate antibodies from interfering phosphate ions, with sensitivity of < or =5 microg/mL. The receptor binding NAb assay used a five-fold dilution, with sensitivity of < or =40 microg/mL. Cutpoints for percent inhibition were based on 95% confidence intervals from naïve sera. Clinical samples were similarly likely to be positive in both assays than positive for neutralization of only one step in the mechanism of action. The two NAb assays yielded complementary information about potential neutralization of rhASB. Relative estimated sensitivity between neutralization assays did not correlate with the number of positive clinical samples or patients. In vitro NAb assays based on a well-understood mechanism of action provide specific information about the NAb mechanism.


Subject(s)
Antibody Formation/drug effects , Enzyme-Linked Immunosorbent Assay/methods , N-Acetylgalactosamine-4-Sulfatase/adverse effects , Receptors, Cell Surface/metabolism , Antibodies/blood , Antibody Formation/immunology , Biotin/immunology , Humans , In Vitro Techniques , N-Acetylgalactosamine-4-Sulfatase/metabolism , Protein Binding , Receptor, IGF Type 2/metabolism , Recombinant Proteins/adverse effects , Recombinant Proteins/metabolism , Sensitivity and Specificity
8.
AAPS J ; 10(2): 363-72, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18607760

ABSTRACT

Naglazyme (galsulfase, rhASB) was developed as enzyme replacement therapy for mucopolysaccharidosis type VI. Naglazyme generated an IgG antibody response in most patients. To better characterize Naglazyme immunogenicity, a solution phase bridged immunoassay was developed to measure total antibody response regardless of isotype. Overnight incubation of serum dilutions with rhASB labeled with biotin and ruthenium-based tags allowed antibody-antigen complexes to form prior to capture on a streptavidin plate. Neat serum was tolerated in the assay, with a 1:10 screening dilution implemented for testing. At this dilution, the assay was sensitive to 75 ng/ml anti-rhASB. Titers were reported as the highest dilution factor with signal above a 95% confidence interval from naïve individual sera. Precise measurement of titers, within two consecutive dilution factors, was observed across analysts and days. Clinical samples showed similar positive/negative results between the IgG ELISA and the total antibody ECLA, although with an imperfect correlation. Improvements in assay performance and implementation strategy altered some positive clinical samples to negative and vice versa. Comparison of the titer readout for clinical samples with the screening signal illustrates a range of relationships for signal versus sample dilution factor, confirming that signal from a screening dilution cannot directly predict the reported titer.


Subject(s)
Antibody Formation/drug effects , Luminescent Measurements/methods , N-Acetylgalactosamine-4-Sulfatase/adverse effects , Adult , Child , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Mucopolysaccharidosis VI/blood , Mucopolysaccharidosis VI/drug therapy , Mucopolysaccharidosis VI/immunology , Recombinant Proteins/adverse effects , Reproducibility of Results , Sensitivity and Specificity , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...