Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(3): 634-649, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38047368

ABSTRACT

Exosomes have emerged as a promising tool for the delivery of drugs and genetic materials, owing to their biocompatibility and non-immunogenic nature. However, challenges persist in achieving successful oral delivery due to their susceptibility to degradation in the harsh gastrointestinal (GI) environment and impeded transport across the mucus-epithelium barrier. To overcome these challenges, we have developed high-purity bovine milk exosomes (mExo) as a scalable and efficient oral drug delivery system, which can be customized by incorporating hydrophilic and zwitterionic motifs on their surface. In our study, we observed significantly improved transport rates by 2.5-4.5-fold in native porcine intestinal mucus after the introduction of hydrophilic and zwitterionic surface modifications, as demonstrated by transwell setup and fluorescence recovery after photobleaching (FRAP) analysis. Remarkably, mExo functionalized by a block peptide (BP), consisting of cationic and anionic amino acids arranged in blocks at the two ends, demonstrated superior tolerability in the acidic gastric environment (with a protein recovery rate of 84.8 ± 7.7%) and exhibited a 2.5-fold increase in uptake by intestinal epithelial cells. Furthermore, both mExo and mExo-BP demonstrated successful intracellular delivery of functional siRNA, resulting in up to 65% suppression of the target green fluorescence protein (GFP) gene expression at a low dose of siRNA (5 pmol) without causing significant toxicity. These findings highlight the immense potential of modifying mExo with hydrophilic and zwitterionic motifs for effective oral delivery of siRNA therapies.


Subject(s)
Exosomes , Nanoparticles , Animals , Swine , Milk , Exosomes/metabolism , Drug Delivery Systems/methods , Peptides/metabolism , RNA, Small Interfering/metabolism , Permeability , Mucus/metabolism , Administration, Oral , Drug Carriers/chemistry , Nanoparticles/chemistry
2.
Front Vet Sci ; 10: 1205485, 2023.
Article in English | MEDLINE | ID: mdl-37662981

ABSTRACT

Introduction: An incursion of foot-and-mouth disease (FMD) into the United States remains a concern of high importance and would have devastating socioeconomic impacts to the livestock and associated industries. This highly transmissible and infectious disease poses continual risk for introduction into the United States (US), due to the legal and illegal global movement of people, animals, and animal products. While stamping out has been shown to effectively control FMD, depopulation of large cattle feedlots (>50,000 head) presents a number of challenges for responders due to the resources required to depopulate and dispose of large numbers of animals in a timely and effective manner. Methods: However, evaluating alternative strategies for FMD control on large feedlots requires a detailed within-farm modeling approach, which can account for the unique structure of these operations. To address this, we developed a single feedlot, within-farm spread model using a novel configuration within the InterSpread Plus (ISP) framework. As proof of concept we designed six scenarios: (i) depopulation - the complete depopulation of the feedlot, (ii) burn-through - a managed "burn-through" where the virus is allowed to spread through the feedlot and only movement restriction and biosecurity are implemented, (iii) firebreak-NV - targeted depopulation of infected pens and adjacent pens without vaccination; (iv) firebreak - targeted depopulation of infected pens and adjacent pens with vaccination of remaining pens; (v) harvest-NV - selective harvest of pens where a 100% movement restriction is applied for 28-30 days, then pens are set for selection to be sent to slaughter, while allowing a controlled "burn-through" without vaccination; and (vi) harvest - selective harvest of pens with vaccination. Results: Overall, the burn-through scenario (ii) had the shortest epidemic duration (31d (30, 33)) median (25th, 75th percentiles), while the firebreak scenario (iv) had the longest (47d (38,55)). Additionally, we found that scenarios implementing depopulation delayed the peak day of infection and reduced the total number of pens infected compared to non-depopulation scenarios. Discussion: This novel configuration of ISP provides proof of concept for further development of this new tool to enhance response planning for an incursion of FMD in the US and provides the capability to investigate response strategies that are designed to address specific outbreak response objectives.

3.
BMC Vet Res ; 18(1): 84, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236347

ABSTRACT

BACKGROUND: African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical distributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clinical signs, severe clinical signs, or daily mortality. RESULTS: Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 2.4 - 7.2 days). CONCLUSION: These transmission model parameter estimates and estimated time to detection via clinical signs provide valuable information that can be used not only to support emergency preparedness but also to inform other simulation models of evaluating regional disease spread.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/diagnosis , African Swine Fever/epidemiology , Animals , Bayes Theorem , Disease Outbreaks/veterinary , Swine , Swine Diseases/diagnosis , Swine Diseases/epidemiology
4.
Open Vet J ; 12(6): 787-796, 2022.
Article in English | MEDLINE | ID: mdl-36650882

ABSTRACT

Background: African swine fever (ASF) is one of the most important foreign animal diseases to the U.S. swine industry. Stakeholders in the swine production sector are on high alert as they witness the devastation of ongoing outbreaks in some of its most important trade partner countries. Efforts to improve preparedness for ASF outbreak management are proceeding in earnest and mathematical modeling is an integral part of these efforts. Aim: This study aimed to assess the impact on within-herd transmission dynamics of ASF when the models used to simulate transmission assume there is homogeneous mixing of animals within a barn. Methods: Barn-level heterogeneity was explicitly captured using a stochastic, individual pig-based, heterogeneous transmission model that considers three types of infection transmission, (1) within-pen via nose-to-nose contact; (2) between-pen via nose-to-nose contact with pigs in adjacent pens; and (3) both between- and within-pen via distance-independent mechanisms (e.g., via fomites). Predictions were compared between the heterogeneous and the homogeneous Gillespie models. Results: Results showed that the predicted mean number of infectious pigs at specific time points differed greatly between the homogeneous and heterogeneous models for scenarios with low levels of between-pen contacts via distance-independent pathways and the differences between the two model predictions were more pronounced for the slow contact rate scenario. The heterogeneous transmission model results also showed that it may take significantly longer to detect ASF, particularly in large barns when transmission predominantly occurs via nose-to-nose contact between pigs in adjacent pens. Conclusion: The findings emphasize the need for completing preliminary explorations when working with homogeneous mixing models to ascertain their suitability to predict disease outcomes.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , Swine , Animals , African Swine Fever/epidemiology , Disease Outbreaks/veterinary , Swine Diseases/epidemiology
5.
Mol Cancer Ther ; 19(12): 2621-2633, 2020 12.
Article in English | MEDLINE | ID: mdl-33087509

ABSTRACT

Therapies for head and neck squamous cell carcinoma (HNSCC) are, at best, moderately effective, underscoring the need for new therapeutic strategies. Ceramide treatment leads to cell death as a consequence of mitochondrial damage by generating oxidative stress and causing mitochondrial permeability. However, HNSCC cells are able to resist cell death through mitochondria repair via mitophagy. Through the use of the C6-ceramide nanoliposome (CNL) to deliver therapeutic levels of bioactive ceramide, we demonstrate that the effects of CNL are mitigated in drug-resistant HNSCC via an autophagic/mitophagic response. We also demonstrate that inhibitors of lysosomal function, including chloroquine (CQ), significantly augment CNL-induced death in HNSCC cell lines. Mechanistically, the combination of CQ and CNL results in dysfunctional lysosomal processing of damaged mitochondria. We further demonstrate that exogenous addition of methyl pyruvate rescues cells from CNL + CQ-dependent cell death by restoring mitochondrial functionality via the reduction of CNL- and CQ-induced generation of reactive oxygen species and mitochondria permeability. Taken together, inhibition of late-stage protective autophagy/mitophagy augments the efficacy of CNL through preventing mitochondrial repair. Moreover, the combination of inhibitors of lysosomal function with CNL may provide an efficacious treatment modality for HNSCC.


Subject(s)
Ceramides/administration & dosage , Liposomes , Lysosomes/drug effects , Lysosomes/metabolism , Mitophagy/drug effects , Nanoparticles , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Pyruvates/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck
6.
MethodsX ; 4: 469-479, 2017.
Article in English | MEDLINE | ID: mdl-29188190

ABSTRACT

A new method of identifying anomalous oceanic temperature and salinity (T/S) data from Argo profiling floats is proposed. The proposed method uses World Ocean Database 2013 climatology to classify good against anomalous data by using convex hulls. An n-sided polygon (convex hull) with least area encompassing all the climatological points is constructed using Jarvis March algorithm. Subsequently Points In Polygon (PIP) principle implemented using ray casting algorithm is used to classify the T/S data as within or without acceptable bounds. It is observed that various types of anomalies associated with the oceanographic data viz., spikes, bias, sensor drifts etc can be identified using this method. Though demonstrated for Argo data it can be applied to any oceanographic data. •The patterns of variation of the parameter (temperature or salinity) corresponding to a particular depth, along the longitude or latitude can be used to build convex hulls.•This method can be effectively used for quality control by building Convex hulls for various observed depths corresponding to biogeochemical data which are sparsely observed.•This method has the advantage of treating the bulk of oceanographic in situ data in a single iteration which filters out anomalous data.

7.
Article in English | MEDLINE | ID: mdl-25679727

ABSTRACT

It is pointed out that the interaction of a magnet and a point charge has not been properly understood because the mutual interactions of the magnet's current carriers have been neglected. The magnet-point-charge interaction is important for understanding some theoretical paradoxes, such as the Shockley-James paradox, and for interpreting some experimentally observed effects, such as the Aharonov-Bohm and Aharonov-Casher phase shifts. Coleman and Van Vleck provide a discussion of the Shockley-James paradox where they note that internal relativistic mechanical momentum (hidden momentum) can be carried by the current carriers of the magnet. Although internal mechanical momentum is indeed dominant for noninteracting particles moving in a closed orbit under the influence of an external electric field, the presence of interactions among the magnet's current carriers leads to an internal electromagnetic momentum, which does not seem to be recognized in the physics literature. In the interacting multiparticle situation, the external charge induces an electrostatic polarization of the magnet, which leads to an internal electromagnetic momentum in the magnet where both the electric and magnetic fields for the momentum are contributed by the magnet particles. This internal electromagnetic momentum for the interacting multiparticle situation is equal in magnitude and opposite in direction compared to the familiar external electromagnetic momentum where the electric field is contributed by the external charged particle and the magnetic field is that due to the magnet. In the present article, the momentum balance of the Shockley-James situation for a system of a magnet and a point charge is calculated in detail for a magnet model consisting of two interacting point charges, which are constrained to move in a circular orbit on a frictionless ring with a compensating negative charge at the center.

SELECTION OF CITATIONS
SEARCH DETAIL
...