Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(19): 191002, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804919

ABSTRACT

We present the operating principle and the first observing run of a novel kind of direct detector for axions and axionlike particles in the galactic halo. Sensitive to the polarisation rotation of linearly polarised laser light induced by an axion field, our experiment is the first detector of its kind collecting scientific data. We discuss our peak sensitivity of 1.51×10^{-10} GeV^{-1} (95% confidence level) to the axion-photon coupling strength in the axion mass range of 1.97-2.01 neV which is, for instance, motivated by supersymmetric grand-unified theories. We also report on effects that arise in our high-finesse in-vacuum cavity at an unprecedented optical continuous-wave intensity of 4.7 MW/cm^{2}. Our detector already belongs to the most sensitive direct searches within its measurement band, and our results pave the way towards surpassing the current sensitivity limits even of astrophysical observations in the mass range from 10^{-8} down to 10^{-16} eV via quantum-enhanced laser interferometry, especially with the potential of scaling our detector up to kilometer length.

2.
Sensors (Basel) ; 24(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38610586

ABSTRACT

We present an interferometric sensor for investigating macroscopic quantum mechanics on a table-top scale. The sensor consists of a pair of suspended optical cavities with finesse over 350,000 comprising 10 g fused silica mirrors. The interferometer is suspended by a four-stage, light, in-vacuum suspension with three common stages, which allows for us to suppress common-mode motion at low frequency. The seismic noise is further suppressed by an active isolation scheme, which reduces the input motion to the suspension point by up to an order of magnitude starting from 0.7 Hz. In the current room-temperature operation, we achieve a peak sensitivity of 0.5 fm/Hz in the acoustic frequency band, limited by a combination of readout noise and suspension thermal noise. Additional improvements of the readout electronics and suspension parameters will enable us to reach the quantum radiation pressure noise. Such a sensor can eventually be utilized for demonstrating macroscopic entanglement and for testing semi-classical and quantum gravity models.

3.
Opt Express ; 26(18): 22783-22792, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184933

ABSTRACT

Multi-core optical fibers are readily used in endoscopic devices to transmit classical images. As an extension to the quantum domain, we study the transmission of the spatial quantum fluctuations of light through a conduit made of the ordered packing of thousands of fibers. Starting from twin beams that are correlated in their local intensity fluctuations, we show that, in the limit of a high density of constituent fiber cores, the intensity-difference squeezing present in arbitrary matching regions of the beams is preserved when one of the beams is sent through the conduit. The capability of using fiber bundles to transport quantum information encoded in the spatial degrees of freedom could bring guided-light technology to the emergent field of quantum imaging.

4.
Sci Rep ; 8(1): 2023, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386536

ABSTRACT

Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10-10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.

5.
Opt Express ; 24(24): 27298-27308, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906302

ABSTRACT

We experimentally study a homodyne detection technique for the characterization of a quadrature squeezed field where the correlated bands, here created by four-wave mixing in a hot atomic vapor, are separated by a large frequency gap of more than 6 GHz. The technique uses a two-frequency local oscillator to detect the fluctuations of the correlated bands at a frequency accessible to the detection electronics. Working at low detection frequency, the method allows for the determination of both the amplitude and the phase of the squeezing spectrum. In particular, we show that the quadrature squeezing created by our four-wave mixing process displays a noise ellipse rotation of π/2 across the squeezing spectrum.

6.
Chemphyschem ; 10(5): 755-60, 2009 Mar 23.
Article in English | MEDLINE | ID: mdl-19226507

ABSTRACT

The entanglement properties of two beams of light can reside in subtle correlations that exist in the unavoidable quantum fluctuations of their amplitudes and phases. Recent advances in the generation of nonclassical light with four-wave mixing in an atomic vapor have permitted the production and the observation of entanglement that is localized in almost arbitrary transverse regions of a pair of beams. These multi-spatial-mode entangled beams may prove useful for an array of applications ranging from noise-free imaging and improved position sensing to quantum information processing.

7.
Science ; 321(5888): 544-7, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18556517

ABSTRACT

Two beams of light can be quantum mechanically entangled through correlations of their phase and intensity fluctuations. For a pair of spatially extended image-carrying light fields, the concept of entanglement can be applied not only to the entire images but also to their smaller details. We used a spatially multimode amplifier based on four-wave mixing in a hot vapor to produce twin images that exhibit localized entanglement. The images can be bright fields that display position-dependent quantum noise reduction in their intensity difference or vacuum twin beams that are strongly entangled when projected onto a large range of different spatial modes. The high degree of spatial entanglement demonstrates that the system is an ideal source for parallel continuous-variable quantum information protocols.

SELECTION OF CITATIONS
SEARCH DETAIL
...