Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37935057

ABSTRACT

Color vision in insects is determined by signaling cascades, central to which are opsin proteins, resulting in sensitivity to light at different wavelengths. In certain insect groups, lineage-specific evolution of opsin genes, in terms of copy number, shifts in expression patterns, and functional amino acid substitutions, has resulted in changes in color vision with subsequent behavioral and niche adaptations. Lepidoptera are a fascinating model to address whether evolutionary change in opsin content and sequence evolution are associated with changes in vision phenotype. Until recently, the lack of high-quality genome data representing broad sampling across the lepidopteran phylogeny has greatly limited our ability to accurately address this question. Here, we annotate opsin genes in 219 lepidopteran genomes representing 33 families, reconstruct their evolutionary history, and analyze shifts in selective pressures and expression between genes and species. We discover 44 duplication events in opsin genes across ∼300 million years of lepidopteran evolution. While many duplication events are species or family specific, we find retention of an ancient long-wavelength-sensitive (LW) opsin duplication derived by retrotransposition within the speciose superfamily Noctuoidea (in the families Nolidae, Erebidae, and Noctuidae). This conserved LW retrogene shows life stage-specific expression suggesting visual sensitivities or other sensory functions specific to the early larval stage. This study provides a comprehensive order-wide view of opsin evolution across Lepidoptera, showcasing high rates of opsin duplications and changes in expression patterns.


Subject(s)
Color Vision , Lepidoptera , Humans , Animals , Opsins/genetics , Gene Duplication , Lepidoptera/genetics , Evolution, Molecular , Rod Opsins/chemistry , Rod Opsins/genetics , Insecta/genetics , Phylogeny , Gene Expression
2.
Genome Res ; 33(1): 32-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36617663

ABSTRACT

Homeobox genes encode transcription factors with essential roles in patterning and cell fate in developing animal embryos. Many homeobox genes, including Hox and NK genes, are arranged in gene clusters, a feature likely related to transcriptional control. Sparse taxon sampling and fragmentary genome assemblies mean that little is known about the dynamics of homeobox gene evolution across Lepidoptera or about how changes in homeobox gene number and organization relate to diversity in this large order of insects. Here we analyze an extensive data set of high-quality genomes to characterize the number and organization of all homeobox genes in 123 species of Lepidoptera from 23 taxonomic families. We find most Lepidoptera have around 100 homeobox loci, including an unusual Hox gene cluster in which the lab gene is repositioned and the ro gene is next to pb A topologically associating domain spans much of the gene cluster, suggesting deep regulatory conservation of the Hox cluster arrangement in this insect order. Most Lepidoptera have four Shx genes, divergent zen-derived loci, but these loci underwent dramatic duplication in several lineages, with some moths having over 165 homeobox loci in the Hox gene cluster; this expansion is associated with local LINE element density. In contrast, the NK gene cluster content is more stable, although there are differences in organization compared with other insects, as well as major rearrangements within butterflies. Our analysis represents the first description of homeobox gene content across the order Lepidoptera, exemplifying the potential of newly generated genome assemblies for understanding genome and gene family evolution.


Subject(s)
Butterflies , Genes, Homeobox , Animals , Phylogeny , Multigene Family , Genomics , Evolution, Molecular
3.
Wellcome Open Res ; 6: 227, 2021.
Article in English | MEDLINE | ID: mdl-34632092

ABSTRACT

We present a genome assembly from an individual male Euproctis similis (the yellow-tail; Arthropoda; Insecta; Lepidoptera; Lymantriidae). The genome sequence is 508 megabases in span. Over 99% of the assembly is scaffolded into 22 chromosomal pseudomolecules, with the Z sex chromosome assembled. The complete mitochondrial genome, 15.5 kb in length, was also assembled.

4.
Sci Adv ; 7(35)2021 Aug.
Article in English | MEDLINE | ID: mdl-34433571

ABSTRACT

Reported declines in insect populations have sparked global concern, with artificial light at night (ALAN) identified as a potential contributing factor. Despite strong evidence that lighting disrupts a range of insect behaviors, the empirical evidence that ALAN diminishes wild insect abundance is limited. Using a matched-pairs design, we found that street lighting strongly reduced moth caterpillar abundance compared with unlit sites (47% reduction in hedgerows and 33% reduction in grass margins) and affected caterpillar development. A separate experiment in habitats with no history of lighting revealed that ALAN disrupted the feeding behavior of nocturnal caterpillars. Negative impacts were more pronounced under white light-emitting diode (LED) street lights compared to conventional yellow sodium lamps. This indicates that ALAN and the ongoing shift toward white LEDs (i.e., narrow- to broad-spectrum lighting) will have substantial consequences for insect populations and ecosystem processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...