Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 26(1): 169-81, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20683884

ABSTRACT

ADAM8 expression is increased in the interface tissue around a loosened hip prosthesis and in the pannus and synovium of patients with rheumatoid arthritis, but its potential role in these processes is unclear. ADAM8 stimulates osteoclast (OCL) formation, but the effects of overexpression or loss of expression of ADAM8 in vivo and the mechanisms responsible for the effects of ADAM8 on osteoclastogenesis are unknown. Therefore, to determine the effects of modulating ADAM expression, we generated tartrate-resistant acid phosphatase (TRAP)-ADAM8 transgenic mice that overexpress ADAM8 in the OCL lineage and ADAM8 knockout (ADAM8 KO) mice. TRAP-ADAM8 mice developed osteopenia and had increased numbers of OCL precursors that formed hypermultinucleated OCLs with an increased bone-resorbing capacity per OCL. They also had an enhanced differentiation capacity, increased TRAF6 expression, and increased NF-κB, Erk, and Akt signaling compared with wild-type (WT) littermates. This increased bone-resorbing capacity per OCL was associated with increased levels of p-Pyk2 and p-Src activation. In contrast, ADAM8 KO mice did not display a bone phenotype in vivo, but unlike WT littermates, they did not increase RANKL production, OCL formation, or calvarial fibrosis in response to tumor necrosis factor α (TNF-α) in vivo. Since loss of ADAM8 does not inhibit basal bone remodeling but only blocks the enhanced OCL formation in response to TNF-α, these results suggest that ADAM8 may be an attractive therapeutic target for preventing bone destruction associated with inflammatory disease.


Subject(s)
ADAM Proteins/metabolism , Antigens, CD/metabolism , Membrane Proteins/metabolism , Osteoclasts/cytology , Osteoclasts/enzymology , Stem Cells/cytology , Stem Cells/enzymology , Acid Phosphatase/metabolism , Animals , Biomarkers/metabolism , Bone Resorption/pathology , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Cell Count , Cell Differentiation/drug effects , Cell Fusion , Enzyme Activation/drug effects , Isoenzymes/metabolism , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , Organ Size/drug effects , Osteoclasts/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/pharmacology , Signal Transduction/drug effects , Stem Cells/drug effects , Tartrate-Resistant Acid Phosphatase , Tumor Necrosis Factor-alpha/pharmacology , src-Family Kinases/metabolism
2.
Hum Mol Genet ; 17(23): 3708-19, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18765443

ABSTRACT

Paget's disease of bone (PDB) is the second most common bone disease and is characterized by focal bone lesions which contain large numbers of abnormal osteoclasts (OCLs) and very active normal osteoblasts in a highly osteoclastogenic marrow microenvironment. The etiology of PDB is not well understood and both environmental and genetic causes have been implicated in its pathogenesis. Mutations in the SQSTM1/p62 gene have been identified in up to 30% of Paget's patients. To determine if p62 mutation is sufficient to induce PDB, we generated mice harboring a mutation causing a P-to-L (proline-to-leucine) substitution at residue 394 (the murine equivalent of human p62(P392L), the most common PDB-associated mutation). Bone marrow cultures from p62(P394L) mice formed increased numbers of OCLs in response to receptor activator of NF-kappaB ligand (RANKL), tumor necrosis factor alpha (TNF-alpha) or 1alpha,25-(OH)(2)D(3), similar to PDB patients. However, purified p62(P394L) OCL precursors depleted of stromal cells were no longer hyper-responsive to 1alpha,25-(OH)(2)D(3), suggesting effects of the p62(P394L) mutation on the marrow microenvironment in addition to direct effects on OCLs. Co-cultures of purified p62(P394L) stromal cells with either wild-type (WT) or p62(P394L) OCL precursors formed more OCLs than co-cultures containing WT stromal cells due to increased RANKL production by the mutant stromal cells. However, despite the enhanced osteoclastogenic potential of both OCL precursors and marrow stromal cells, the p62(P394L) mice had histologically normal bones. These results indicate that this PDB-associated p62 mutation is not sufficient to induce PDB and suggest that additional factors acting together with p62 mutation are necessary for the development of PDB in vivo.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Bone Marrow/metabolism , Mutation, Missense , Osteitis Deformans/genetics , Osteoclasts/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bone Resorption/genetics , Bone Resorption/metabolism , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteitis Deformans/metabolism , RANK Ligand/metabolism , Sequestosome-1 Protein , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...