Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 8(10): 5124-5138, 2018 May.
Article in English | MEDLINE | ID: mdl-29876087

ABSTRACT

Identifying the factors predicting the high-elevation suitable habitats of Central Asian argali wild sheep and how these suitable habitats are affected by the changing climate regimes could help address conservation and management efforts and identify future critical habitat for the species in eastern Tajikistan. This study used environmental niche models (ENMs) to map and compare potential present and future distributions of suitable environmental conditions for Marco Polo argali. Argali occurrence points were collected during field surveys conducted from 2009 to 2016. Our models showed that terrain ruggedness and annual mean temperature had strong correlations on argali distribution. We then used two greenhouse gas concentration trajectories (RCP 4.5 and RCP 8.5) for two future time periods (2050 and 2070) to model the impacts of climate change on Marco Polo argali habitat. Results indicated a decline of suitable habitat with majority of losses observed at lower elevations (3,300-4,300 m). Models that considered all variables (climatic and nonclimatic) predicted losses of present suitable areas of 60.6% (6,928 km2) and 63.2% (7,219 km2) by 2050 and 2070, respectively. Results also showed averaged habitat gains of 46.2% (6,106 km2) at much higher elevations (4,500-6,900 m) and that elevational shifts of habitat use could occur in the future. Our results could provide information for conservation planning for this near threatened species in the region.

2.
Environments ; 5(8): 91, 2018.
Article in English | MEDLINE | ID: mdl-32982030

ABSTRACT

The effects of future land use change on arid and semi-arid watersheds in the American Southwest have important management implications. Seamless, national-scale land-use-change scenarios for developed land were acquired from the US Environmental Protection Agency Integrated Climate and Land Use Scenarios (lCLUS) project and extracted to fit the Northern Rio Grande River Basin, New Mexico relative to projections of housing density for the period from 2000 through 2100. Habitat models developed from the Southwest Regional Gap Analysis Project were invoked to examine changes in wildlife habitat and biodiversity metrics using five ICLUS scenarios. The scenarios represent a US Census base-case and four modifications that were consistent with the different assumptions underlying the A1, A2, B1, and B2 Intergovernmental Panel on Climate Change global greenhouse gas emission storylines. Habitat models for terrestrial vertebrate species were used to derive metrics reflecting ecosystem services or biodiversity aspects valued by humans that could be quantified and mapped. Example metrics included total terrestrial vertebrate species richness, bird species richness, threatened and endangered species, and harvestable species (e.g., waterfowl, big game). Overall, the defined scenarios indicated that the housing density and extent of developed lands will increase throughout the century with a resultant decrease in area for all species richness categories. The A2 Scenario, in general, showed greatest effect on area by species richness category. The integration of the land use scenarios with biodiversity metrics derived from deductive habitat models may prove to be an important tool for decision makers involved in impact assessments and adaptive planning processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...