Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nat Neurosci ; 21(2): 228-239, 2018 02.
Article in English | MEDLINE | ID: mdl-29311743

ABSTRACT

The cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a common histopathological hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD). However, the composition of aggregates and their contribution to the disease process remain unknown. Here we used proximity-dependent biotin identification (BioID) to interrogate the interactome of detergent-insoluble TDP-43 aggregates and found them enriched for components of the nuclear pore complex and nucleocytoplasmic transport machinery. Aggregated and disease-linked mutant TDP-43 triggered the sequestration and/or mislocalization of nucleoporins and transport factors, and interfered with nuclear protein import and RNA export in mouse primary cortical neurons, human fibroblasts and induced pluripotent stem cell-derived neurons. Nuclear pore pathology is present in brain tissue in cases of sporadic ALS and those involving genetic mutations in TARDBP and C9orf72. Our data strongly implicate TDP-43-mediated nucleocytoplasmic transport defects as a common disease mechanism in ALS/FTD.


Subject(s)
Active Transport, Cell Nucleus/physiology , Amyotrophic Lateral Sclerosis , Cerebral Cortex/cytology , DNA-Binding Proteins/metabolism , Frontotemporal Dementia , Nuclear Pore/metabolism , Active Transport, Cell Nucleus/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , C9orf72 Protein/ultrastructure , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Embryo, Nonmammalian , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Larva , Male , Mice , Mice, Inbred C57BL , Neuroblastoma/pathology , Nuclear Envelope/pathology , Nuclear Envelope/ultrastructure , Nuclear Pore/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology
2.
Acta Neuropathol Commun ; 5(1): 96, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29216908

ABSTRACT

Mutations in the stress granule protein T-cell restricted intracellular antigen 1 (TIA1) were recently shown to cause amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD). Here, we provide detailed clinical and neuropathological descriptions of nine cases with TIA1 mutations, together with comparisons to sporadic ALS (sALS) and ALS due to repeat expansions in C9orf72 (C9orf72+). All nine patients with confirmed mutations in TIA1 were female. The clinical phenotype was heterogeneous with a range in the age at onset from late twenties to the eighth decade (mean = 60 years) and disease duration from one to 6 years (mean = 3 years). Initial presentation was either focal weakness or language impairment. All affected individuals received a final diagnosis of ALS with or without FTD. No psychosis or parkinsonism was described. Neuropathological examination on five patients found typical features of ALS and frontotemporal lobar degeneration (FTLD-TDP, type B) with anatomically widespread TDP-43 proteinopathy. In contrast to C9orf72+ cases, caudate atrophy and hippocampal sclerosis were not prominent. Detailed evaluation of the pyramidal motor system found a similar degree of neurodegeneration and TDP-43 pathology as in sALS and C9orf72+ cases; however, cases with TIA1 mutations had increased numbers of lower motor neurons containing round eosinophilic and Lewy body-like inclusions on HE stain and round compact cytoplasmic inclusions with TDP-43 immunohistochemistry. Immunohistochemistry and immunofluorescence failed to demonstrate any labeling of inclusions with antibodies against TIA1. In summary, our TIA1 mutation carriers developed ALS with or without FTD, with a wide range in age at onset, but without other neurological or psychiatric features. The neuropathology was characterized by widespread TDP-43 pathology, but a more restricted pattern of neurodegeneration than C9orf72+ cases. Increased numbers of round eosinophilic and Lewy-body like inclusions in lower motor neurons may be a distinctive feature of ALS caused by TIA1 mutations.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Mutation/genetics , T-Cell Intracellular Antigen-1/genetics , Adult , Aged , Amyotrophic Lateral Sclerosis/complications , Autopsy , C9orf72 Protein/genetics , DNA-Binding Proteins/metabolism , Family Health , Female , Frontotemporal Dementia/complications , Humans , Male , Middle Aged , Neuropathology
3.
Neuron ; 95(4): 808-816.e9, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28817800

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Mutation/genetics , Poly(A)-Binding Proteins/genetics , Adult , Aged , DNA-Binding Proteins/metabolism , Family Health , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Humans , Male , Microscopy, Confocal , Middle Aged , RNA-Binding Protein FUS/metabolism , Stress, Physiological/physiology , T-Cell Intracellular Antigen-1 , Time Factors , Transfection
4.
Acta Neuropathol ; 134(5): 715-728, 2017 11.
Article in English | MEDLINE | ID: mdl-28808785

ABSTRACT

We previously found C9orf72-associated (c9ALS) and sporadic amyotrophic lateral sclerosis (sALS) brain transcriptomes comprise thousands of defects, among which, some are likely key contributors to ALS pathogenesis. We have now generated complementary methylome data and combine these two data sets to perform a comprehensive "multi-omic" analysis to clarify the molecular mechanisms initiating RNA misregulation in ALS. We found that c9ALS and sALS patients have generally distinct but overlapping methylome profiles, and that the c9ALS- and sALS-affected genes and pathways have similar biological functions, indicating conserved pathobiology in disease. Our results strongly implicate SERPINA1 in both C9orf72 repeat expansion carriers and non-carriers, where expression levels are greatly increased in both patient groups across the frontal cortex and cerebellum. SERPINA1 expression is particularly pronounced in C9orf72 repeat expansion carriers for both brain regions, where SERPINA1 levels are strictly down regulated across most human tissues, including the brain, except liver and blood, and are not measurable in E18 mouse brain. The altered biological networks we identified contain critical molecular players known to contribute to ALS pathology, which also interact with SERPINA1. Our comprehensive combined methylation and transcription study identifies new genes and highlights that direct genetic and epigenetic changes contribute to c9ALS and sALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Cerebellum/metabolism , DNA Methylation , Frontal Lobe/metabolism , alpha 1-Antitrypsin/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/metabolism , Cerebellum/pathology , DNA Repeat Expansion , Exons , Frontal Lobe/pathology , Humans , alpha 1-Antitrypsin/metabolism
5.
Neurol Genet ; 3(4): e161, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28660252

ABSTRACT

OBJECTIVE: We performed a genome-wide brain expression study to reveal the underpinnings of diseases linked to a repeat expansion in chromosome 9 open reading frame 72 (C9ORF72). METHODS: The genome-wide expression profile was investigated in brain tissue obtained from C9ORF72 expansion carriers (n = 32), patients without this expansion (n = 30), and controls (n = 20). Using quantitative real-time PCR, findings were confirmed in our entire pathologic cohort of expansion carriers (n = 56) as well as nonexpansion carriers (n = 31) and controls (n = 20). RESULTS: Our findings were most profound in the cerebellum, where we identified 40 differentially expressed genes, when comparing expansion carriers to patients without this expansion, including 22 genes that have a homeobox (e.g., HOX genes) and/or are located within the HOX gene cluster (top hit: homeobox A5 [HOXA5]). In addition to the upregulation of multiple homeobox genes that play a vital role in neuronal development, we noticed an upregulation of transthyretin (TTR), an extracellular protein that is thought to be involved in neuroprotection. Pathway analysis aligned with these findings and revealed enrichment for gene ontology processes involved in (anatomic) development (e.g., organ morphogenesis). Additional analyses uncovered that HOXA5 and TTR levels are associated with C9ORF72 variant 2 levels as well as with intron-containing transcript levels, and thus, disease-related changes in those transcripts may have triggered the upregulation of HOXA5 and TTR. CONCLUSIONS: In conclusion, our identification of genes involved in developmental processes and neuroprotection sheds light on potential compensatory mechanisms influencing the occurrence, presentation, and/or progression of C9ORF72-related diseases.

6.
Hum Mol Genet ; 26(17): 3421-3431, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28637276

ABSTRACT

Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD.


Subject(s)
C9orf72 Protein/genetics , Aged , Amyotrophic Lateral Sclerosis/genetics , Autopsy , Brain/metabolism , C9orf72 Protein/metabolism , Case-Control Studies , DNA Repeat Expansion/genetics , Female , Frontal Lobe/metabolism , Frontotemporal Lobar Degeneration/genetics , Heterozygote , Humans , Male , Middle Aged , Mutation , Neurodegenerative Diseases/genetics , RNA Polymerase II , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, RNA , Transcriptional Activation
7.
Ann Neurol ; 82(1): 139-146, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28628244

ABSTRACT

As potential treatments for C9ORF72-associated amyotrophic lateral sclerosis (c9ALS) approach clinical trials, the identification of prognostic biomarkers for c9ALS becomes a priority. We show that levels of phosphorylated neurofilament heavy chain (pNFH) in cerebrospinal fluid (CSF) predict disease status and survival in c9ALS patients, and are largely stable over time. Moreover, c9ALS patients exhibit higher pNFH levels, more rapid disease progression, and shorter survival after disease onset than ALS patients without C9ORF72 expansions. These data support the use of CSF pNFH as a prognostic biomarker for clinical trials, which will increase the likelihood of successfully developing a treatment for c9ALS. Ann Neurol 2017;82:139-146.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Neurofilament Proteins/cerebrospinal fluid , Proteins/genetics , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , C9orf72 Protein , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Phosphorylation , Survival Analysis , Young Adult
8.
Acta Neuropathol ; 134(2): 255-269, 2017 08.
Article in English | MEDLINE | ID: mdl-28508101

ABSTRACT

A growing body of evidence suggests that a loss of chromosome 9 open reading frame 72 (C9ORF72) expression, formation of dipeptide-repeat proteins, and generation of RNA foci contribute to disease pathogenesis in amyotrophic lateral sclerosis and frontotemporal dementia. Although the levels of C9ORF72 transcripts and dipeptide-repeat proteins have already been examined thoroughly, much remains unknown about the role of RNA foci in C9ORF72-linked diseases. As such, we performed a comprehensive RNA foci study in an extensive pathological cohort of C9ORF72 expansion carriers (n = 63). We evaluated two brain regions using a newly developed computer-automated pipeline allowing recognition of cell nuclei and RNA foci (sense and antisense) supplemented by manual counting. In the frontal cortex, the percentage of cells with sense or antisense RNA foci was 26 or 12%, respectively. In the cerebellum, 23% of granule cells contained sense RNA foci and 1% antisense RNA foci. Interestingly, the highest percentage of cells with RNA foci was observed in cerebellar Purkinje cells (~70%). In general, more cells contained sense RNA foci than antisense RNA foci; however, when antisense RNA foci were present, they were usually more abundant. We also observed that an increase in the percentage of cells with antisense RNA foci was associated with a delayed age at onset in the frontal cortex (r = 0.43, p = 0.003), whereas no other associations with clinico-pathological features were seen. Importantly, our large-scale study is the first to provide conclusive evidence that RNA foci are not the determining factor of the clinico-pathological variability observed in C9ORF72 expansion carriers and it emphasizes that the distribution of RNA foci does not follow the pattern of neurodegeneration, stressing the complex interplay between different aspects of C9ORF72-related diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Brain/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/pathology , Analysis of Variance , Brain/metabolism , Cohort Studies , Electronic Data Processing , Female , Frontotemporal Dementia/diagnosis , Humans , Male , Middle Aged , Neurons/classification , Neurons/metabolism , Neurons/pathology , RNA, Antisense/pharmacology , RNA, Messenger/metabolism
9.
J Neurol Neurosurg Psychiatry ; 88(2): 99-105, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27261500

ABSTRACT

IMPORTANCE: Understanding the natural history of familial amyotrophic lateral sclerosis (ALS) caused by SOD1 mutations (ALSSOD1) will provide key information for optimising clinical trials in this patient population. OBJECTIVE: To establish an updated natural history of ALSSOD1. DESIGN, SETTING AND PARTICIPANTS: Retrospective cohort study from 15 medical centres in North America evaluated records from 175 patients with ALS with genetically confirmed SOD1 mutations, cared for after the year 2000. MAIN OUTCOMES AND MEASURES: Age of onset, survival, ALS Functional Rating Scale (ALS-FRS) scores and respiratory function were analysed. Patients with the A4V (Ala-Val) SOD1 mutation (SOD1A4V), the largest mutation population in North America with an aggressive disease progression, were distinguished from other SOD1 mutation patients (SOD1non-A4V) for analysis. RESULTS: Mean age of disease onset was 49.7±12.3 years (mean±SD) for all SOD1 patients, with no statistical significance between SOD1A4V and SOD1non-A4V (p=0.72, Kruskal-Wallis). Total SOD1 patient median survival was 2.7 years. Mean disease duration for all SOD1 was 4.6±6.0 and 1.4±0.7 years for SOD1A4V. SOD1A4V survival probability (median survival 1.2 years) was significantly decreased compared with SOD1non-A4V (median survival 6.8 years; p<0.0001, log-rank). A statistically significant increase in ALS-FRS decline in SOD1A4V compared with SOD1non-A4V participants (p=0.02) was observed, as well as a statistically significant increase in ALS-forced vital capacity decline in SOD1A4V compared with SOD1non-A4V (p=0.02). CONCLUSIONS AND RELEVANCE: SOD1A4V is an aggressive, but relatively homogeneous form of ALS. These SOD1-specific ALS natural history data will be important for the design and implementation of clinical trials in the ALSSOD1 patient population.


Subject(s)
Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/pathology , Clinical Trials as Topic , Research Design , Superoxide Dismutase/genetics , Adult , Age of Onset , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Disease Progression , Humans , Middle Aged , Mutation , Retrospective Studies , Vital Capacity/physiology
10.
Nat Neurosci ; 19(5): 668-677, 2016 05.
Article in English | MEDLINE | ID: mdl-26998601

ABSTRACT

Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.


Subject(s)
Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Neurons/pathology , Proteins/toxicity , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Atrophy/pathology , Behavior, Animal , Brain/metabolism , Brain/pathology , Brain/ultrastructure , C9orf72 Protein , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Gene Expression/genetics , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/ultrastructure , Mice , Mutation , Nerve Degeneration/pathology , Neurons/metabolism , Primary Cell Culture , Proteins/genetics , Proteins/metabolism , Ubiquitinated Proteins/metabolism
11.
Exp Neurol ; 277: 171-177, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26746986

ABSTRACT

Among several genetic mutations known to cause amyotrophic lateral sclerosis (ALS), a hexanucleotide repeat expansion in the C9orf72 gene is the most common. In approximately 30% of C9orf72-ALS cases, 5-methylcytosine (5mC) levels within the C9orf72 promoter are increased, resulting in a modestly attenuated phenotype. The developmental timing of C9orf72 promoter hypermethylation and the reason why it occurs in only a subset of patients remain unknown. In order to model the acquisition of C9orf72 hypermethylation and examine the potential role of 5-hydroxymethylcytosine (5hmC), we generated induced pluripotent stem cells (iPSCs) from an ALS patient with C9orf72 promoter hypermethylation. Our data show that 5mC levels are reduced by reprogramming and then re-acquired upon neuronal specification, while 5hmC levels increase following reprogramming and are highest in iPSCs and motor neurons. We confirmed the presence of 5hmC within the C9orf72 promoter in post-mortem brain tissues of hypermethylated patients. These findings show that iPSCs are a valuable model system for examining epigenetic perturbations caused by the C9orf72 mutation and reveal a potential role for cytosine demethylation.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/physiology , Mutation/genetics , Promoter Regions, Genetic/physiology , Proteins/genetics , 5-Methylcytosine/metabolism , Brain/pathology , C9orf72 Protein , Coculture Techniques , CpG Islands/physiology , Cytosine/analogs & derivatives , DNA Methylation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Lymphocytes/physiology , Motor Neurons/physiology , Nanog Homeobox Protein , Nestin/metabolism , RNA, Messenger/metabolism , SOXB1 Transcription Factors/metabolism , Time Factors
12.
Neuron ; 88(5): 902-909, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26637797

ABSTRACT

A non-coding hexanucleotide repeat expansion in the C9ORF72 gene is the most common mutation associated with familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To investigate the pathological role of C9ORF72 in these diseases, we generated a line of mice carrying a bacterial artificial chromosome containing exons 1 to 6 of the human C9ORF72 gene with approximately 500 repeats of the GGGGCC motif. The mice showed no overt behavioral phenotype but recapitulated distinctive histopathological features of C9ORF72 ALS/FTD, including sense and antisense intranuclear RNA foci and poly(glycine-proline) dipeptide repeat proteins. Finally, using an artificial microRNA that targets human C9ORF72 in cultures of primary cortical neurons from the C9BAC mice, we have attenuated expression of the C9BAC transgene and the poly(GP) dipeptides. The C9ORF72 BAC transgenic mice will be a valuable tool in the study of ALS/FTD pathobiology and therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Dipeptides/metabolism , Disease Models, Animal , Frontotemporal Dementia/genetics , Proteins/genetics , Age Factors , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Brain/metabolism , Brain/pathology , C9orf72 Protein , Cells, Cultured , Cerebral Cortex/cytology , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Dipeptides/genetics , Frontotemporal Dementia/mortality , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Gene Expression Regulation/genetics , Genotype , Humans , In Vitro Techniques , Mice, Transgenic , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/physiology
13.
Acta Neuropathol ; 130(6): 877-89, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26518018

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder linked to repetitive traumatic brain injury (TBI) and characterized by deposition of hyperphosphorylated tau at the depths of sulci. We sought to determine the presence of CTE pathology in a brain bank for neurodegenerative disorders for individuals with and without a history of contact sports participation. Available medical records of 1721 men were reviewed for evidence of past history of injury or participation in contact sports. Subsequently, cerebral cortical samples were processed for tau immunohistochemistry in cases with a documented history of sports exposure as well as age- and disease-matched men and women without such exposure. For cases with available frozen tissue, genetic analysis was performed for variants in APOE, MAPT, and TMEM106B. Immunohistochemistry revealed 21 of 66 former athletes had cortical tau pathology consistent with CTE. CTE pathology was not detected in 198 individuals without exposure to contact sports, including 33 individuals with documented single-incident TBI sustained from falls, motor vehicle accidents, domestic violence, or assaults. Among those exposed to contact sports, those with CTE pathology did not differ from those without CTE pathology with respect to noted clinicopathologic features. There were no significant differences in genetic variants for those with CTE pathology, but we observed a slight increase in MAPT H1 haplotype, and there tended to be fewer homozygous carriers of the protective TMEM106B rs3173615 minor allele in those with sports exposure and CTE pathology compared to those without CTE pathology. In conclusion, this study has identified a small, yet significant, subset of individuals with neurodegenerative disorders and concomitant CTE pathology. CTE pathology was only detected in individuals with documented participation in contact sports. Exposure to contact sports was the greatest risk factor for CTE pathology. Future studies addressing clinical correlates of CTE pathology are needed.


Subject(s)
Brain Injury, Chronic/etiology , Brain Injury, Chronic/pathology , Brain/pathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Aged , Apolipoproteins E/genetics , Athletic Injuries/complications , Athletic Injuries/genetics , Athletic Injuries/metabolism , Athletic Injuries/pathology , Brain/metabolism , Brain Injury, Chronic/genetics , Brain Injury, Chronic/metabolism , Female , Humans , Immunohistochemistry , Male , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Retrospective Studies , Tissue Banks , tau Proteins/genetics , tau Proteins/metabolism
14.
Acta Neuropathol ; 130(6): 863-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26437865

ABSTRACT

The loss of chromosome 9 open reading frame 72 (C9ORF72) expression, associated with C9ORF72 repeat expansions, has not been examined systematically. Three C9ORF72 transcript variants have been described thus far; the GGGGCC repeat is located between two non-coding exons (exon 1a and exon 1b) in the promoter region of transcript variant 2 (NM_018325.4) or in the first intron of variant 1 (NM_145005.6) and variant 3 (NM_001256054.2). We studied C9ORF72 expression in expansion carriers (n = 56) for whom cerebellum and/or frontal cortex was available. Using quantitative real-time PCR and digital molecular barcoding techniques, we assessed total C9ORF72 transcripts, variant 1, variant 2, variant 3, and intron containing transcripts [upstream of the expansion (intron 1a) and downstream of the expansion (intron 1b)]; the latter were correlated with levels of poly(GP) and poly(GA) proteins aberrantly translated from the expansion as measured by immunoassay (n = 50). We detected a decrease in expansion carriers as compared to controls for total C9ORF72 transcripts, variant 1, and variant 2: the strongest association was observed for variant 2 (quantitative real-time PCR cerebellum: median 43 %, p = 1.26e-06, and frontal cortex: median 58 %, p = 1.11e-05; digital molecular barcoding cerebellum: median 31 %, p = 5.23e-10, and frontal cortex: median 53 %, p = 5.07e-10). Importantly, we revealed that variant 1 levels greater than the 25th percentile conferred a survival advantage [digital molecular barcoding cerebellum: hazard ratio (HR) 0.31, p = 0.003, and frontal cortex: HR 0.23, p = 0.0001]. When focusing on intron containing transcripts, analysis of the frontal cortex revealed an increase of potentially truncated transcripts in expansion carriers as compared to controls [digital molecular barcoding frontal cortex (intron 1a): median 272 %, p = 0.003], with the highest levels in patients pathologically diagnosed with frontotemporal lobar degeneration. In the cerebellum, our analysis suggested that transcripts were less likely to be truncated and, excitingly, we discovered that intron containing transcripts were associated with poly(GP) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.33, p = 0.02, and (intron 1b): r = 0.49, p = 0.0004] and poly(GA) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.34, p = 0.02, and (intron 1b): r = 0.38, p = 0.007]. In summary, we report decreased expression of specific C9ORF72 transcripts and provide support for the presence of truncated transcripts as well as pre-mRNAs that may serve as templates for RAN translation. We further show that higher C9ORF72 levels may have beneficial effects, which warrants caution in the development of new therapeutic approaches.


Subject(s)
Cerebellum/metabolism , DNA Repeat Expansion , Frontal Lobe/metabolism , Proteins/genetics , Proteins/metabolism , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Genetic Association Studies , Genetic Variation , Heterozygote , Humans , Introns , Male , Middle Aged , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Promoter Regions, Genetic , Survival Analysis , Tissue Banks
15.
Acta Neuropathol ; 130(4): 559-73, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26350237

ABSTRACT

Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers.


Subject(s)
Cerebellum/metabolism , DNA Repeat Expansion , Proteins/genetics , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein , Cerebellum/pathology , Cognition Disorders/complications , Cognition Disorders/genetics , Cognition Disorders/metabolism , Cognition Disorders/pathology , Cohort Studies , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontotemporal Dementia/complications , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Heterozygote , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Middle Aged , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Neuron Disease/complications , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Protein Biosynthesis , RNA, Messenger/metabolism
16.
Nat Neurosci ; 18(8): 1175-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26192745

ABSTRACT

Increasing evidence suggests that defective RNA processing contributes to the development of amyotrophic lateral sclerosis (ALS). This may be especially true for ALS caused by a repeat expansion in C9orf72 (c9ALS), in which the accumulation of RNA foci and dipeptide-repeat proteins are expected to modify RNA metabolism. We report extensive alternative splicing (AS) and alternative polyadenylation (APA) defects in the cerebellum of c9ALS subjects (8,224 AS and 1,437 APA), including changes in ALS-associated genes (for example, ATXN2 and FUS), and in subjects with sporadic ALS (sALS; 2,229 AS and 716 APA). Furthermore, heterogeneous nuclear ribonucleoprotein H (hnRNPH) and other RNA-binding proteins are predicted to be potential regulators of cassette exon AS events in both c9ALS and sALS. Co-expression and gene-association network analyses of gene expression and AS data revealed divergent pathways associated with c9ALS and sALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cerebellum/metabolism , Frontal Lobe/metabolism , Gene Expression Regulation/genetics , Proteins/genetics , RNA/metabolism , Transcriptome/genetics , Adult , Aged , Alternative Splicing , C9orf72 Protein , Genetic Association Studies , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Middle Aged , Polyadenylation/genetics , Sequence Analysis, RNA
17.
Acta Neuropathol ; 130(1): 77-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25943890

ABSTRACT

Frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP) is the most common pathology associated with frontotemporal dementia (FTD). Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) and mutations in progranulin (GRN) are the major known genetic causes of FTLD-TDP; however, the genetic etiology in the majority of FTLD-TDP remains unexplained. In this study, we performed whole-genome sequencing in 104 pathologically confirmed FTLD-TDP patients from the Mayo Clinic brain bank negative for C9ORF72 and GRN mutations and report on the contribution of rare single nucleotide and copy number variants in 21 known neurodegenerative disease genes. Interestingly, we identified 5 patients (4.8 %) with variants in optineurin (OPTN) and TANK-binding kinase 1 (TBK1) that are predicted to be highly pathogenic, including two double mutants. Case A was a compound heterozygote for mutations in OPTN, carrying the p.Q235* nonsense and p.A481V missense mutation in trans, while case B carried a deletion of OPTN exons 13-15 (p.Gly538Glufs*27) and a loss-of-function mutation (p.Arg117*) in TBK1. Cases C-E carried heterozygous missense mutations in TBK1, including the p.Glu696Lys mutation which was previously reported in two amyotrophic lateral sclerosis (ALS) patients and is located in the OPTN binding domain. Quantitative mRNA expression and protein analysis in cerebellar tissue showed a striking reduction of OPTN and/or TBK1 expression in 4 out of 5 patients supporting pathogenicity in these specific patients and suggesting a loss-of-function disease mechanism. Importantly, neuropathologic examination showed FTLD-TDP type A in the absence of motor neuron disease in 3 pathogenic mutation carriers. In conclusion, we highlight TBK1 as an important cause of pure FTLD-TDP, identify the first OPTN mutations in FTLD-TDP, and suggest a potential oligogenic basis for at least a subset of FTLD-TDP patients. Our data further add to the growing body of evidence linking ALS and FTD and suggest a key role for the OPTN/TBK1 pathway in these diseases.


Subject(s)
Frontotemporal Lobar Degeneration/genetics , Mutation , Protein Serine-Threonine Kinases/genetics , Transcription Factor TFIIIA/genetics , Aged , Aged, 80 and over , Blotting, Western , Brain/metabolism , Brain/pathology , Cell Cycle Proteins , Cohort Studies , DNA Copy Number Variations , Female , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression , Humans , Immunohistochemistry , Male , Membrane Transport Proteins , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Sequence Analysis, DNA , Transcription Factor TFIIIA/metabolism
18.
Am J Hum Genet ; 96(6): 962-70, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26004200

ABSTRACT

An expanded G4C2 repeat in C9orf72 represents the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the lower limit for pathological expansions is unknown (the suggested cutoff is 30 repeats). It has been proposed that the expansion might have occurred only once in human history and subsequently spread throughout the population. However, our present findings support a hypothesis of multiple origins for the expansion. We report a British-Canadian family in whom a ∼70-repeat allele from the father (unaffected by ALS or FTLD at age 89 years) expanded during parent-offspring transmission and started the first generation affected by ALS (four children carry an ∼1,750-repeat allele). Epigenetic and RNA-expression analyses further discriminated the offspring's large expansions (which were methylated and associated with reduced C9orf72 expression) from the ∼70-repeat allele (which was unmethylated and associated with upregulation of C9orf72). Moreover, RNA foci were only detected in fibroblasts from offspring with large expansions, but not in the father, who has the ∼70-repeat allele. All family members with expansions were found to have an ancient known risk haplotype, although it was inherited on a unique 5-Mb genetic backbone. We conclude that small expansions (e.g., 70 repeats) might be considered "pre-mutations" to reflect their propensity to expand in the next generation. Follow-up studies might help explain the high frequency of ALS- or FTLD-affected individuals with an expansion but without a familial history (e.g., 21% among Finnish ALS subjects).


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Proteins/genetics , Blotting, Southern , C9orf72 Protein , Canada , DNA Methylation/genetics , Haplotypes/genetics , Humans , Pedigree , Polymerase Chain Reaction
19.
Science ; 348(6239): 1151-4, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25977373

ABSTRACT

The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with "c9FTD/ALS" are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Frontotemporal Dementia/genetics , Mice , Proteins/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Antisocial Personality Disorder/genetics , Antisocial Personality Disorder/pathology , C9orf72 Protein , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Dependovirus , Dipeptides/metabolism , Frontotemporal Dementia/pathology , Gene Transfer Techniques , HEK293 Cells , Humans , Purkinje Cells/metabolism , Purkinje Cells/pathology , RNA, Nuclear/metabolism
20.
Acta Neuropathol ; 130(1): 145-57, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25917047

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a degenerative disorder affecting upper and lower motor neurons, but it is increasingly recognized to affect other systems, with cognitive impairment resembling frontotemporal dementia (FTD) in some patients. We report clinical and pathologic findings of a family with ALS due to a truncating mutation, p.Gly141X, in copper/zinc superoxide dismutase (SOD1). The proband presented clinically with FTD and later showed progressive motor neuron disease, while all other family members had early-onset and rapidly progressive ALS without significant cognitive deficits. Pathologic examination of both the proband and her daughter revealed degeneration of corticospinal tracts and motor neurons in brain and spinal cord compatible with ALS. On the other hand, the proband also had neocortical and limbic system degeneration with pleomorphic neuronal cytoplasmic inclusions. Extramotor pathology in her daughter was relatively restricted to the hypothalamus and extrapyramidal system, but not the neocortex. The inclusions in the proband and her daughter were immunoreactive for SOD1, but negative for TAR DNA-binding protein of 43 kDa (TDP-43). In the proband, a number of the neocortical inclusions were immunopositive for α-internexin, initially suggesting a diagnosis of atypical FTLD, but there was no evidence of fused in sarcoma (FUS) immunoreactivity, which is often detected in atypical FTLD. Analogous to atypical FTLD, neuronal inclusions had variable co-localization of SOD1 and α-internexin. The current classification of FTLD is based on the major constituent protein: FTLD-tau, FTLD-TDP-43, and FTLD-FUS. The proband in this family indicates that SOD1, while rare, can also be the substrate of FTLD, in addition to the more common presentation of ALS. The explanation for clinical and pathologic heterogeneity of SOD1 mutations, including the p.Gly141X mutation, remains unresolved.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Brain/pathology , Frontotemporal Lobar Degeneration/genetics , Mutation , Superoxide Dismutase/genetics , Adult , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Brain/metabolism , Family , Fatal Outcome , Female , Frontotemporal Lobar Degeneration/pathology , Frontotemporal Lobar Degeneration/physiopathology , Humans , Male , Middle Aged , Pedigree , Superoxide Dismutase-1
SELECTION OF CITATIONS
SEARCH DETAIL
...