Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 135(4): 044305, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21806117

ABSTRACT

Reactions of HOD(+) with N(2) have been studied for HOD(+) in its ground state and with one quantum of excitation in each of its vibrational modes: (001)--predominately OH stretch, 0.396 eV, (010)--bend, 0.153 eV, and (100)--predominately OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 4 eV. The cross sections for both H(+) and D(+) transfer rise slowly from threshold with increasing collision energy; however, all three vibrational modes enhance reaction much more strongly than equivalent amounts of collision energy and the enhancements remain large even at high collision energy, where the vibration contributes less than 10% of the total energy. Excitation of the OH stretch enhances H(+) transfer by a factor of ∼5, but the effect on D(+) transfer is only slightly larger than that from an equivalent increase in collision energy, and smaller than the effect from the much lower energy bend excitation. Similarly, OD stretch excitation strongly enhances D(+) transfer, but has essentially no effect beyond that of the additional energy on H(+) transfer. The effects of the two stretch vibrations are consistent with the expectation that stretching the bond that is broken in the reaction puts momentum in the correct coordinate to drive the system into the exit channel. From this perspective it is quite surprising that bend excitation also results in large (factor of 2) enhancements of both H(+) and D(+) transfer channels, such that its effect on the total cross section at collision energies below ∼2 eV is comparable to those from the two stretch modes, even though the bend excitation energy is much smaller. For collision energies above ∼2 eV, the vibrational effects become approximately proportional to the vibrational energy, though still much larger than the effects of equivalent addition of collision energy. Measurements of the product recoil velocity distributions show that reaction is direct at all collision energies, with roughly half the products in a sharp peak corresponding to stripping dynamics and half with a broad and approximately isotropic recoil velocity distribution. Despite the large effects of vibrational excitation on reactivity, the effects on recoil dynamics are small, indicating that vibrational excitation does not cause qualitative changes in the reaction mechanism or in the distribution of reactive impact parameters.

2.
J Chem Phys ; 134(6): 064312, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21322685

ABSTRACT

Reactions of HOD(+) with CO(2) have been studied for HOD(+) in its ground state, and with one quantum of excitation in each of its vibrational modes: (001)--predominantly OH stretch, 0.396 eV; (010)--bend, 0.153 eV; and (100)--predominantly OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 3 eV. The cross sections for both H(+) and D(+) transfer rise with increasing collision energy from threshold to ∼1 eV, then become weakly dependent of the collision energy. All three vibrational modes enhance the total reactivity, but quite mode specifically. The H(+) transfer reaction is enhanced by OH stretch excitation, whereas OD stretch excitation has little effect. Conversely, the D(+) transfer reaction is enhanced by OD stretch excitation, while the OH stretch has little effect. Excitation of the bend strongly enhances both channels. The effects of the stretch excitations are consistent with previous studies of neutral HOD mode-selective chemistry, and can be at least qualitatively understood in terms of a late barrier to product formation. The fact that bend excitation produces the largest overall enhancement is surprising, because this is the lowest energy excitation, and is not obviously connected with the reaction coordinates for either H(+) or D(+) transfer. A rationalization in terms of the effects of water distortion on the potential surface is proposed.


Subject(s)
Carbon Dioxide/chemistry , Deuterium/chemistry , Hydrogen/chemistry , Quantum Theory
3.
J Phys Chem A ; 115(7): 1172-85, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21291191

ABSTRACT

Integral cross sections and product recoil velocity distributions were measured for the reaction of HOD(+) with NO(2), in which the HOD(+) reactant was prepared in its ground state and with mode-selective excitation in the 001 (OH stretch), 100 (OD stretch), and 010 (bend) modes. In addition, we measured the 300 K thermal kinetics in a selected ion flow tube reactor and report product branching ratios different from previous measurements. Reaction is found to occur on both the singlet and triplet surfaces with near-unit efficiency. At 300 K, the product branching indicates that triplet → singlet transitions occur in about 60% of triplet-coupled collisions, which we attribute to long interaction times mediated by complexes on the triplet surface. Because the collision times are much shorter in the beam experiments, the product distributions show no signs of such transitions. The dominant product on the singlet surface is charge transfer. Reactions on the triplet surface lead to NO(+), NO(2)H(+), and NO(2)D(+). There is also charge transfer, producing NO(2)(+) (a(3)B(2)); however, this triplet NO(2)(+) mostly predissociates. The NO(2)H(+)/NO(2)D(+) cross sections peak at low collision energies and are insignificant above ~1 eV due to OH/OD loss from the nascent product ions. The effects of HOD(+) vibration are mode-specific. Vibration inhibits charge transfer, with the largest effect from the bend. The NO(2)H(+)/NO(2)D(+) channels are also vibrationally inhibited, and the mode dependence reveals how energy in different reactant modes couples to the internal energy of the product ions.

4.
J Chem Phys ; 134(3): 034313, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21261359

ABSTRACT

Integral cross sections and product recoil velocity distributions were measured for reaction of C(2)H(2)(+) with NO(2), in which the C(2)H(2)(+) reactant was prepared in its ground state, and with mode-selective excitation in the cis-bend (2ν(5)) and CC stretch (n · ν(2), n = 1, 2). Because both reactants have one unpaired electron, collisions can occur with either singlet or triplet coupling of these unpaired electrons, and the contributions are separated based on distinct recoil dynamics. For singlet coupling, reaction efficiency is near unity, with significant branching to charge transfer (NO(2)(+)), O(-) transfer (NO(+)), and O transfer (C(2)H(2)O(+)) products. For triplet coupling, reaction efficiency varies between 13% and 19%, depending on collision energy. The only significant triplet channel is NO(+) + triplet ketene, generated predominantly by O(-) transfer, with a possible contribution from dissociative charge transfer at high collision energies. NO(2)(+) formation (charge transfer) can only occur on the singlet surface, and appears to be mediated by a weakly bound complex at low energies. O transfer (C(2)H(2)O(+)) also appears to be dominated by reaction on the singlet surface, but is quite inefficient, suggesting a bottleneck limiting coupling to this product from the singlet reaction coordinate. The dominant channel is O(-) transfer, producing NO(+), with roughly equal contributions from reaction on singlet and triplet surfaces. The effects of C(2)H(2)(+) vibration are modest, but mode specific. For all three product channels (i.e., charge, O(-), and O transfer), excitation of the CC stretch fundamental (ν(2)) has little effect, 2 · ν(2) excitation results in ∼50% reduction in reactivity, and excitation of the cis-bend overtone (2 · ν(5)) results in ∼50% enhancement. The fact that all channels have similar mode dependence suggests that the rate-limiting step, where vibrational excitation has its effect, is early on the reaction coordinate, and branching to the individual product channels occurs later.

5.
J Phys Chem A ; 113(16): 3911-21, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19182967

ABSTRACT

A large set of quasi-classical trajectories were calculated at the PBE1PBE/6-311G** level of theory, in an attempt to understand the mechanistic origins of the large, mode-specific enhancement of the O-transfer reaction by NO2+ bending vibration and the surprisingly large suppressing effect of bending angular momentum. The trajectories reproduce the magnitude of the absolute reaction cross section, and also get the dependence of reactivity on NO2+ vibrational state, and the vibrational state dependent scattering behavior qualitatively correct. Analysis of the trajectories shows that the bending effect is not simply a consequence of enhanced reactivity in bent geometries but, rather, that excitation of bending motion allows reaction in a wider range of orientation angles, even if the NO2+ is not bent at the onset of the collisional interaction. There is a strong interplay between NO2+ bending and transient charge transfer during the collisions. Such charge transfer enhances reactivity, but only if the reactants are oriented correctly.

6.
J Chem Phys ; 128(11): 114304, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18361568

ABSTRACT

NO(2)(+) in six different vibrational states was reacted with C(2)H(2) over the center-of-mass energy range from 0.03 to 3.3 eV. The reaction, forming NO(+)+C(2)H(2)O and NO+C(2)H(2)O(+), shows a bimodal dependence on collision energy (E(col)). At low E(col), the reaction is quite inefficient (<2%) despite this being a barrierless, exoergic reaction, and is strongly inhibited by E(col). For E(col)> approximately 0.5 eV, a second mechanism turns on, with an efficiency reaching approximately 27% for E(col)>3 eV. The two reaction channels have nearly identical dependence on E(col) and NO(2)(+) vibrational state, and identical recoil dynamics, leading to the conclusion that they represent a single reaction path throughout most of the collision. All modes of NO(2)(+) vibrational excitation enhance both channels at all E(col), however, the effects of bend (010) and bend overtone (02(0)0) excitation are particularly strong (factor of 4). In contrast, the asymmetric stretch (001), which intuition suggests should be coupled to the reaction coordinate, leads to only a factor of approximately 2 enhancement, as does the symmetric stretch (100). Perhaps the most surprising effect is that of the bending angular momentum, which strongly suppress reaction, even though both the energy and angular momentum involved are tiny compared to the collision energy and angular momentum. The results are interpreted in light of ab initio and Rice-Ramsperger-Kassel-Marcus calculations.

7.
J Chem Phys ; 125(13): 133115, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029441

ABSTRACT

A combined experimental and trajectory study of vibrationally state-selected NO2+ collisions with Ne, Ar, Kr, and Xe is presented. Ne, Ar, and Kr are similar in that only dissociation to the excited singlet oxygen channel is observed; however, the appearance energies vary by approximately 4 eV between the three rare gases, and the variation is nonmonotonic in rare gas mass. Xe behaves quite differently, allowing efficient access to the ground triplet state dissociation channel. For all four rare gases there are strong effects of NO2+ vibrational excitation that extend over the entire collision energy range, implying that vibration influences the efficiency of collision to internal energy conversion. Bending excitation is more efficient than stretching; however, bending angular momentum partially counters the enhancement. Direct dynamics trajectories for NO2+ + Kr reproduce both the collision energy and vibrational state effects observed experimentally and reveal that intracomplex charge transfer is critical for the efficient energy transfer needed to drive dissociation. The strong vibrational effects can be rationalized in terms of bending, and to a lesser extent, stretching distortion enhancing transition to the Kr+ -NO2 charge state.

SELECTION OF CITATIONS
SEARCH DETAIL
...