Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Ther ; 7(1): 52-63, 72, 2006.
Article in English | MEDLINE | ID: mdl-16598684

ABSTRACT

Diclazuril is a triazine-based antiprotozoal agent which may have clinical application in the treatment of equine protozoal myeloencephalomyelitis (EPM). In this study, the use of the sodium salt diclazuril to increase the apparent bioavailability of diclazuril for the treatment and prophylaxis of EPM and various other Apicomplexan mediated diseases is described. In this study, diclazuril sodium salt was synthesized and administered to horses as diclazuril sodium salt formulations. The absorption, distribution, and clearance of diclazuril sodium salt in the horse are described. Diclazuril was rapidly absorbed, with peak plasma concentrations occurring at 8-24 hours following an oral mucosal administration of diclazuril sodium salt. The mean oral bioavailability of diclazuril as Clinacox was 9.5% relative to oral mucosal administration of diclazuril sodium salt. Additionally, diclazuril in DMSO administered orally was 50% less bioavailable than diclazuril sodium salt following an oral mucosal administration. It was also shown that diclazuril sodium salt has the potential to be used as a feed additive for the treatment and prophylaxis of EPM and various other Apicomplexan mediated diseases.


Subject(s)
Coccidiostats/pharmacokinetics , Horses/metabolism , Nitriles/pharmacokinetics , Triazines/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Central Nervous System Protozoal Infections/drug therapy , Central Nervous System Protozoal Infections/veterinary , Chemistry, Pharmaceutical , Coccidiostats/administration & dosage , Coccidiostats/therapeutic use , Dimethyl Sulfoxide , Female , Horse Diseases/drug therapy , Horses/blood , Nitriles/administration & dosage , Nitriles/therapeutic use , Salts , Sodium , Triazines/administration & dosage , Triazines/therapeutic use
2.
Toxicol Mech Methods ; 13(3): 199-211, 2003.
Article in English | MEDLINE | ID: mdl-20021160

ABSTRACT

The epidemiological association between black cherry trees and mare reproductive loss syndrome has focused attention on cyanide and environmental cyanogens. This article describes the toxicokinetics of cyanide in horses and the relationships between blood cyanide concentrations and potentially adverse responses to cyanide. To identify safe and humane blood concentration limits for cyanide experiments, mares were infused with increasing doses (1-12 mg/min) of sodium cyanide for 1 h. Infusion at 12 mg/min produced clinical signs of cyanide toxicity at 38 min; these signs included increased heart rate, weakness, lack of coordination, loss of muscle tone, and respiratory and behavioral distress. Peak blood cyanide concentrations were about 2500 ng/mL; the clinical and biochemical signs of distress reversed when infusion stopped. Four horses were infused with 1 mg/min of sodium cyanide for 1 h to evaluate the distribution and elimination kinetics of cyanide. Blood cyanide concentrations peaked at 1160 ng/mL and then declined rapidly, suggesting a two-compartment, open model. The distribution (alpha) phase half-life was 0.74 h, the terminal (beta phase) half-life was 16.16 h. The mean residence time was 12.4 h, the steady-state volume of distribution was 2.21 L/kg, and the mean systemic clearance was 0.182 L/h/kg. Partitioning studies showed that blood cyanide was about 98.5% associated with the red cell fraction. No clinical signs of cyanide intoxication or distress were observed during these infusion experiments. Mandelonitrile was next administered orally at 3 mg/kg to four horses. Cyanide was rapidly available from the orally administered mandelonitrile and the C max blood concentration of 1857 ng/mL was observed at 3 min after dosing; thereafter, blood cyanide again declined rapidly, reaching 100 ng/mL by 4 h postadministration. The mean oral bioavailability of cyanide from mandelonitrile was 57% +/- 6.5 (SEM), and its apparent terminal half-life was 13 h +/- 3 (SEM). No clinical signs of cyanide intoxication or distress were observed during these experiments. These data show that during acute exposure to higher doses of cyanide (~600 mg/horse; 2500 ng/mL of cyanide in blood), redistribution of cyanide rapidly terminated the acute toxic responses. Similarly, mandelonitrile rapidly delivered its cyanide content, and acute cyanide intoxications following mandelonitrile administration can also be terminated by redistribution. Rapid termination of cyanide intoxication by redistribution is consistent with and explains many of the clinical and biochemical characteristics of acute, high-dose cyanide toxicity. On the other hand, at lower concentrations (<100 ng/mL in blood), metabolic transformation of cyanide is likely the dominant mechanism of termination of action. This process is slow, with terminal half-lives ranging from 12-16 hours. The large volume of distribution and the long terminal-phase-elimination half-life of cyanide suggest different mechanisms for toxicities and termination of toxicities associated with low-level exposure to cyanide. If environmental exposure to cyanide is a factor in the cause of MRLS, then it is likely in the more subtle effects of low concentrations of cyanide on specific metabolic processes that the associations will be found.

3.
Toxicol Mech Methods ; 13(2): 129-38, 2003.
Article in English | MEDLINE | ID: mdl-20021191

ABSTRACT

An epidemiological association among black cherry trees (Prunus serotina), eastern tent caterpillars (Malacosoma americana), and the spring 2001 episode of mare reproductive loss syndrome in central Kentucky focused attention on the potential role of environmental cyanogens in the causes of this syndrome. To evaluate the role of cyanide (CN (-)) in this syndrome, a simple, rapid, and highly sensitive method for determination of low parts per billion concentrations of CN (-) in equine blood and other biological fluids was developed. The analytical method is an adaptation of methods commonly in use and involves the evolution and trapping of gaseous hydrogen cyanide followed by spectrophotometric determination by autoanalyzer. The limit of quantitation of this method is 2 ng/mL in equine blood, and the standard curve shows a linear relationship between CN (-) concentration and absorbance (r >. 99). The method throughput is high, up to 100 samples per day. Normal blood CN (-) concentrations in horses at pasture in Kentucky in October 2001 ranged from 3-18 ng/mL, whereas hay-fed horses showed blood CN (-) levels of 2-7 ng/mL in January 2002. Blood samples from a small number of cattle at pasture showed broadly similar blood CN (-) concentrations. Intravenous administration of sodium cyanide and oral administration of mandelonitrile and amygdalin yielded readily detectable increases in blood CN (-) concentrations. This method is sufficiently sensitive and specific to allow the determination of normal blood CN (-) levels in horses, as well as the seasonal and pasture-dependent variations. The method should also be suitable for investigation of the toxicokinetics and disposition of subacutely toxic doses of CN (-) and its precursor cyanogens in the horse as well as in other species.

4.
Vet Ther ; 4(4): 350-63, 2003.
Article in English | MEDLINE | ID: mdl-15136977

ABSTRACT

Furosemide is a potent loop diuretic used for the prevention of exercise-induced pulmonary hemorrhage in horses. This drug may interfere with the detection of other substances by reducing urinary concentrations, so its use is strictly regulated. The regulation of furosemide in many racing jurisdictions is based on paired limits of urinary SG (<1.010) and serum furosemide concentrations (>100 ng/ml). To validate this regulatory mechanism, a liquid chromatography/mass spectrometry/mass spectrometry method employing a solid-phase extraction procedure and furosemide-d5 as an internal standard was developed. The method was used to determine the pharmacokinetic parameters of furosemide in equine serum samples and its effects on urinary SG after IV administration (250 mg) to 10 horses. Pharmacokinetic analysis showed that serum concentrations of furosemide were well described by a two-compartmental open model. Based on results in this study, it is very unlikely for horses to have serum furosemide concentrations greater than 100 ng/ml or urine SG less than 1.010 at 4 hours after administration (250 mg IV). However, it should be remembered that urine SG is a highly variable measurement in horses, and even without furosemide administration, some horses might naturally have urine SG values less than 1.010.


Subject(s)
Diuretics/pharmacokinetics , Furosemide/pharmacokinetics , Horses/metabolism , Animals , Area Under Curve , Diuretics/administration & dosage , Diuretics/pharmacology , Female , Furosemide/administration & dosage , Furosemide/pharmacology , Horses/blood , Horses/urine , Infusions, Intravenous/veterinary , Specific Gravity/drug effects
5.
Vet Ther ; 4(3): 257-68, 2003.
Article in English | MEDLINE | ID: mdl-15136987

ABSTRACT

Selegiline ([R]-[-]N,alpha-dimethyl-N-2- propynylphenethylamine or l-deprenyl), an irreversible inhibitor of monoamine oxidase, is a classic antidyskinetic and antiparkinsonian agent widely used in human medicine both as monotherapy and as an adjunct to levodopa therapy. Selegiline is classified by the Association of Racing Commissioners International (ARCI) as a class 2 agent, and is considered to have high abuse potential in racing horses. A highly sensitive LC/MS/MS quantitative analytical method has been developed for selegiline and its potential metabolites amphetamine and methamphetamine using commercially available deuterated analogs of these compounds as internal standards. After administering 40 mg of selegiline orally to two horses, relatively low (<60 ng/ml) concentrations of parent selegiline, amphetamine, and methamphetamine were recovered in urine samples. However, relatively high urinary concentrations of another selegiline metabolite were found, tentatively identified as N- desmethylselegiline. This metabolite was synthesized and found to be indistinguishable from the new metabolite recovered from horse urine, thereby confirming the chemical identity of the equine metabolite. Additionally, analysis of urine samples from four horses dosed with 50 mg of selegiline confirmed that N-desmethylselegiline is the major urinary metabolite of selegiline in horses. In related behavior studies, p.o. and i.v. administration of 30 mg of selegiline produced no significant changes in either locomotor activities or heart rates.


Subject(s)
Horses/metabolism , Monoamine Oxidase Inhibitors/pharmacokinetics , Selegiline/pharmacokinetics , Administration, Oral , Animals , Behavior, Animal/drug effects , Female , Mass Spectrometry/veterinary , Monoamine Oxidase Inhibitors/administration & dosage , Monoamine Oxidase Inhibitors/blood , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/urine , Selegiline/administration & dosage , Selegiline/blood , Selegiline/pharmacology , Selegiline/urine , Substance Abuse Detection/veterinary
6.
Vet Ther ; 3(3): 297-307, 2002.
Article in English | MEDLINE | ID: mdl-12447838

ABSTRACT

Single doses of one, three, and six actuations (120 micro g albuterol/actuation) and multiple daily doses (six actuations per dose four times daily) for 5 days of aerosol albuterol sulfate were sequentially administered to each of six horses using an equine inhaler device (Torpex, 3M Animal Care Products, St. Paul, MN [corrected] and Boehringer Ingleheim Vetmedica, Inc., St. Joseph, MO [corrected]). A 2-week washout period was allowed between each dose. ELISA testing revealed no evidence of albuterol in urine at 24 hours after any single-dose administration. Results indicated that 48 hours or longer should be allowed for albuterol to be cleared from urine after single doses. When given at the maximum recommended rate of six actuations per dose four times a day for 5 days, urine samples tested by ELISA showed no evidence of albuterol at 48 hours after the final dose. Testing of nasal swabs by ELISA demonstrated the presence of albuterol for 8 hours after each single dose, and some horses might have detectable levels of albuterol in nasal swabs for several days following administration of multiple doses. As a guideline for withdrawal time, 72 hours or longer should be allowed after administration of aerosol albuterol sulfate to horses before participation in equestrian competitions that are regulated for detection of certain performance-enhancing substances. However, these recommendations were based on a small sample of horses and the specific ELISA test used and interpreted as described. Factors specific to individual horses may influence these detection times.


Subject(s)
Albuterol/administration & dosage , Albuterol/analysis , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/analysis , Enzyme-Linked Immunosorbent Assay/methods , Horses , Nebulizers and Vaporizers/veterinary , Administration, Inhalation , Aerosols , Albuterol/blood , Albuterol/urine , Animals , Bronchodilator Agents/blood , Bronchodilator Agents/urine , Cross Reactions , Doping in Sports , Drug Administration Schedule , Reference Standards , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...