Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Top Spinal Cord Inj Rehabil ; 30(1): 45-58, 2024.
Article in English | MEDLINE | ID: mdl-38433737

ABSTRACT

Background: Accurate outcome prediction is desirable post spinal cord injury (SCI), reducing uncertainty for patients and supporting personalized treatments. Numerous attempts have been made to create clinical prediction rules that identify patients who are likely to recover function. It is unknown to what extent these rules are routinely used in clinical practice. Objectives: To better understand knowledge of, and attitudes toward, clinical prediction rules amongst SCI clinicians in the United Kingdom. Methods: An online survey was distributed via mailing lists of clinical special interest groups and relevant National Health Service Trusts. Respondents answered questions about their knowledge of existing clinical prediction rules and their general attitudes to using them. They also provided information about their level of experience with SCI patients. Results: One hundred SCI clinicians completed the survey. The majority (71%) were unaware of clinical prediction rules for SCI; only 8% reported using them in clinical practice. Less experienced clinicians were less likely to be aware. Lack of familiarity with prediction rules was reported as being a barrier to their use. The importance of clinical expertise when making prognostic decisions was emphasized. All respondents reported interest in using clinical prediction rules in the future. Conclusion: The results show widespread lack of awareness of clinical prediction rules amongst SCI clinicians in the United Kingdom. However, clinicians were positive about the potential for clinical prediction rules to support decision-making. More focus should be directed toward refining current rules and improving dissemination within the SCI community.


Subject(s)
Clinical Decision Rules , Spinal Cord Injuries , Humans , State Medicine
2.
Hum Brain Mapp ; 39(8): 3109-3126, 2018 08.
Article in English | MEDLINE | ID: mdl-29624772

ABSTRACT

Stuttering is a disorder in which the smooth flow of speech is interrupted. People who stutter show structural and functional abnormalities in the speech and motor system. It is unclear whether functional differences reflect general traits of the disorder or are specifically related to the dysfluent speech state. We used a hierarchical approach to separate state and trait effects within stuttering. We collected sparse-sampled functional MRI during two overt speech tasks (sentence reading and picture description) in 17 people who stutter and 16 fluent controls. Separate analyses identified indicators of: (1) general traits of people who stutter; (2) frequency of dysfluent speech states in subgroups of people who stutter; and (3) the differences between fluent and dysfluent states in people who stutter. We found that reduced activation of left auditory cortex, inferior frontal cortex bilaterally, and medial cerebellum were general traits that distinguished fluent speech in people who stutter from that of controls. The stuttering subgroup with higher frequency of dysfluent states during scanning (n = 9) had reduced activation in the right subcortical grey matter, left temporo-occipital cortex, the cingulate cortex, and medial parieto-occipital cortex relative to the subgroup who were more fluent (n = 8). Finally, during dysfluent states relative to fluent ones, there was greater activation of inferior frontal and premotor cortex extending into the frontal operculum, bilaterally. The above differences were seen across both tasks. Subcortical state effects differed according to the task. Overall, our data emphasise the independence of trait and state effects in stuttering.


Subject(s)
Brain/diagnostic imaging , Brain/physiopathology , Speech/physiology , Stuttering/diagnostic imaging , Stuttering/physiopathology , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Models, Theoretical , Young Adult
3.
Cortex ; 103: 44-54, 2018 06.
Article in English | MEDLINE | ID: mdl-29554541

ABSTRACT

Comprehending speech can be particularly challenging in a noisy environment and in the absence of semantic context. It has been proposed that the articulatory motor system would be recruited especially in difficult listening conditions. However, it remains unknown how signal-to-noise ratio (SNR) and semantic context affect the recruitment of the articulatory motor system when listening to continuous speech. The aim of the present study was to address the hypothesis that involvement of the articulatory motor cortex increases when the intelligibility and clarity of the spoken sentences decreases, because of noise and the lack of semantic context. We applied Transcranial Magnetic Stimulation (TMS) to the lip and hand representations in the primary motor cortex and measured motor evoked potentials from the lip and hand muscles, respectively, to evaluate motor excitability when young adults listened to sentences. In Experiment 1, we found that the excitability of the lip motor cortex was facilitated during listening to both semantically anomalous and coherent sentences in noise relative to non-speech baselines, but neither SNR nor semantic context modulated the facilitation. In Experiment 2, we replicated these findings and found no difference in the excitability of the lip motor cortex between sentences in noise and clear sentences without noise. Thus, our results show that the articulatory motor cortex is involved in speech processing even in optimal and ecologically valid listening conditions and that its involvement is not modulated by the intelligibility and clarity of speech.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Speech Perception/physiology , Speech/physiology , Adult , Comprehension , Electromyography , Female , Humans , Male , Transcranial Magnetic Stimulation , Young Adult
4.
Front Psychol ; 5: 754, 2014.
Article in English | MEDLINE | ID: mdl-25076928

ABSTRACT

Perceiving speech engages parts of the motor system involved in speech production. The role of the motor cortex in speech perception has been demonstrated using low-frequency repetitive transcranial magnetic stimulation (rTMS) to suppress motor excitability in the lip representation and disrupt discrimination of lip-articulated speech sounds (Möttönen and Watkins, 2009). Another form of rTMS, continuous theta-burst stimulation (cTBS), can produce longer-lasting disruptive effects following a brief train of stimulation. We investigated the effects of cTBS on motor excitability and discrimination of speech and non-speech sounds. cTBS was applied for 40 s over either the hand or the lip representation of motor cortex. Motor-evoked potentials recorded from the lip and hand muscles in response to single pulses of TMS revealed no measurable change in motor excitability due to cTBS. This failure to replicate previous findings may reflect the unreliability of measurements of motor excitability related to inter-individual variability. We also measured the effects of cTBS on a listener's ability to discriminate: (1) lip-articulated speech sounds from sounds not articulated by the lips ("ba" vs. "da"); (2) two speech sounds not articulated by the lips ("ga" vs. "da"); and (3) non-speech sounds produced by the hands ("claps" vs. "clicks"). Discrimination of lip-articulated speech sounds was impaired between 20 and 35 min after cTBS over the lip motor representation. Specifically, discrimination of across-category ba-da sounds presented with an 800-ms inter-stimulus interval was reduced to chance level performance. This effect was absent for speech sounds that do not require the lips for articulation and non-speech sounds. Stimulation over the hand motor representation did not affect discrimination of speech or non-speech sounds. These findings show that stimulation of the lip motor representation disrupts discrimination of speech sounds in an articulatory feature-specific way.

5.
Brain Lang ; 126(1): 1-7, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23644583

ABSTRACT

It is possible to comprehend speech and discriminate languages by viewing a speaker's articulatory movements. Transcranial magnetic stimulation studies have shown that viewing speech enhances excitability in the articulatory motor cortex. Here, we investigated the specificity of this enhanced motor excitability in native and non-native speakers of English. Both groups were able to discriminate between speech movements related to a known (i.e., English) and unknown (i.e., Hebrew) language. The motor excitability was higher during observation of a known language than an unknown language or non-speech mouth movements, suggesting that motor resonance is enhanced specifically during observation of mouth movements that convey linguistic information. Surprisingly, however, the excitability was equally high during observation of a static face. Moreover, the motor excitability did not differ between native and non-native speakers. These findings suggest that the articulatory motor cortex processes several kinds of visual cues during speech communication.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Speech Perception/physiology , Visual Perception/physiology , Adult , Female , Humans , Language , Lipreading , Male , Transcranial Magnetic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...