Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
2.
Eur J Hum Genet ; 31(5): 521-525, 2023 05.
Article in English | MEDLINE | ID: mdl-36446895

ABSTRACT

We aimed to determine whether SNP-microarray genomic testing of saliva had a greater diagnostic yield than blood for pathogenic copy number variants (CNVs). We selected patients who underwent CMA testing of both blood and saliva from 23,289 blood and 21,857 saliva samples. Our cohort comprised 370 individuals who had testing of both, 224 with syndromic intellectual disability (ID) and 146 with isolated ID. Mosaic pathogenic CNVs or aneuploidy were detected in saliva but not in blood in 20/370 (4.4%). All 20 individuals had syndromic ID, accounting for 9.1% of the syndromic ID sub-cohort. Pathogenic CNVs were large in size (median of 46 Mb), and terminal in nature, with median mosaicism of 27.5% (not exceeding 40%). By contrast, non-mosaic pathogenic CNVs were 100% concordant between blood and saliva, considerably smaller in size (median of 0.65 Mb), and predominantly interstitial in location. Given that salivary microarray testing has increased diagnostic utility over blood in individuals with syndromic ID, we recommend it as a first-tier testing in this group.


Subject(s)
Intellectual Disability , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Saliva , Developmental Disabilities/genetics , Chromosome Aberrations , Mosaicism , Genomics , DNA Copy Number Variations
3.
Mol Psychiatry ; 28(4): 1647-1663, 2023 04.
Article in English | MEDLINE | ID: mdl-36117209

ABSTRACT

Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.


Subject(s)
Apraxias , Speech Disorders , Child , Humans , Speech Disorders/genetics , Apraxias/genetics , Chromosome Mapping , Causality , Brain , Histone-Lysine N-Methyltransferase
5.
Hum Mutat ; 43(12): 1956-1969, 2022 12.
Article in English | MEDLINE | ID: mdl-36030538

ABSTRACT

Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.


Subject(s)
Tuberous Sclerosis , Humans , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tumor Suppressor Proteins/genetics , Mosaicism , Mutation
6.
Hum Mol Genet ; 31(14): 2307-2316, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35137044

ABSTRACT

Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.


Subject(s)
Ciliopathies , Hamartoma , Hypothalamic Diseases , Ciliopathies/genetics , Hamartoma/genetics , Hedgehog Proteins/metabolism , Humans , Hypothalamic Diseases/complications , Hypothalamic Diseases/genetics , Magnetic Resonance Imaging
7.
Neurol Genet ; 8(1): e652, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35097204

ABSTRACT

BACKGROUND AND OBJECTIVES: The 2-hit model of genetic disease is well established in cancer, yet has only recently been reported to cause brain malformations associated with epilepsy. Pathogenic germline and somatic variants in genes in the mechanistic target of rapamycin (mTOR) pathway have been implicated in several malformations of cortical development. We investigated the 2-hit model by performing genetic analysis and searching for germline and somatic variants in genes in the mTOR and related pathways. METHODS: We searched for germline and somatic pathogenic variants in 2 brothers with drug-resistant focal epilepsy and surgically resected focal cortical dysplasia (FCD) type IIA. Exome sequencing was performed on blood- and brain-derived DNA to identify pathogenic variants, which were validated by droplet digital PCR. In vitro functional assays of a somatic variant were performed. RESULTS: Exome analysis revealed a novel, maternally inherited, germline pathogenic truncation variant (c.48delG; p.Ser17Alafs*70) in NPRL3 in both brothers. NPRL3 is a known FCD gene that encodes a negative regulator of the mTOR pathway. Somatic variant calling in brain-derived DNA from both brothers revealed a low allele fraction somatic variant (c.338C>T; p.Ala113Val) in the WNT2 gene in 1 brother, confirmed by droplet digital PCR. In vitro functional studies suggested a loss of WNT2 function as a consequence of this variant. A second somatic variant has not yet been found in the other brother. DISCUSSION: We identify a pathogenic germline mTOR pathway variant (NPRL3) and a somatic variant (WNT2) in the intersecting WNT signaling pathway, potentially implicating the WNT2 gene in FCD and supporting a dual-pathway 2-hit model. If confirmed in other cases, this would extend the 2-hit model to pathogenic variants in different genes in critical, intersecting pathways in a malformation of cortical development. Detection of low allele fraction somatic second hits is challenging but promises to unravel the molecular architecture of FCDs.

8.
Neurology ; 94(20): e2148-e2167, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32345733

ABSTRACT

OBJECTIVE: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS). METHODS: Precise phenotyping together with research genome or exome analysis were performed on children referred with a primary diagnosis of CAS. Gene coexpression and gene set enrichment analyses were conducted on high-confidence gene candidates. RESULTS: Thirty-four probands ascertained for CAS were studied. In 11/34 (32%) probands, we identified highly plausible pathogenic single nucleotide (n = 10; CDK13, EBF3, GNAO1, GNB1, DDX3X, MEIS2, POGZ, SETBP1, UPF2, ZNF142) or copy number (n = 1; 5q14.3q21.1 locus) variants in novel genes or loci for CAS. Testing of parental DNA was available for 9 probands and confirmed that the variants had arisen de novo. Eight genes encode proteins critical for regulation of gene transcription, and analyses of transcriptomic data found CAS-implicated genes were highly coexpressed in the developing human brain. CONCLUSION: We identify the likely genetic etiology in 11 patients with CAS and implicate 9 genes for the first time. We find that CAS is often a sporadic monogenic disorder, and highly genetically heterogeneous. Highly penetrant variants implicate shared pathways in broad transcriptional regulation, highlighting the key role of transcriptional regulation in normal speech development. CAS is a distinctive, socially debilitating clinical disorder, and understanding its molecular basis is the first step towards identifying precision medicine approaches.


Subject(s)
Apraxias/genetics , Speech Disorders/genetics , Speech/physiology , Transcription Factors/genetics , Adolescent , Apraxias/diagnosis , Apraxias/physiopathology , Child , Child, Preschool , Female , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Genetic Association Studies , Humans , Male , Speech Disorders/diagnosis , Speech Disorders/physiopathology
9.
Eur J Med Genet ; 63(1): 103618, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30684669

ABSTRACT

A small heterozygous deletion involving KANK1 was originally reported in 2005 to cause cerebral palsy in one large Israeli family of Jewish Moroccan origin. There were nine affected children over two generations to five unaffected fathers. All of these children had congenital hypotonia that evolved into spastic quadriplegia over the first year of life, along with intellectual impairment and brain atrophy. The subsequent clinical depictions of other individuals with neurological disease harbouring a comparable KANK1 deletion have been extremely variable and most often quite dissimilar to the original family. The reported pathogenicity of these deletions has also been variable, due to an inconsistent nature of reported disease associations and limited data. We therefore sought to perform a review of the significance of small distal interstitial chromosome 9p24.3 deletions principally involving KANK1, including data from the VCGS cytogenetics laboratory. We found that carrier parents do not appear to display an increased frequency of neurological disease, individuals with a small KANK1 deletion have sometimes been found to have an alternate genetic diagnosis that explained their neurological condition, and small KANK1 deletions can be seen with approximate equal frequency in case and control populations. These data led us to conclude that small deletions involving KANK1 do not cause a highly-penetrant influence of large effect size and they are unlikely to contribute significantly to the aetiology of disease in patients with development delay, intellectual disability, autism or cerebral palsy. We recommend searching for an alternate explanation for disease in individuals with a neurological disorder found to have a small deletion involving KANK1.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cerebral Palsy/genetics , Cytoskeletal Proteins/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Cerebral Palsy/pathology , Child , Child, Preschool , Chromosomes, Human, Pair 9/genetics , DNA Copy Number Variations/genetics , Developmental Disabilities/pathology , Female , Genetic Predisposition to Disease , Humans , Intellectual Disability/pathology , Male , Pedigree , Sequence Deletion/genetics , Young Adult
10.
Brain ; 142(4): 966-977, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30796815

ABSTRACT

Speech disorders are highly prevalent in the preschool years, but frequently resolve. The neurobiological basis of the most persistent and severe form, apraxia of speech, remains elusive. Current neuroanatomical models of speech processing in adults propose two parallel streams. The dorsal stream is involved in sound to motor speech transformations, while the ventral stream supports sound/letter to meaning. Data-driven theories on the role of these streams during atypical speech and language development are lacking. Here we provide comprehensive behavioural and neuroimaging data on a large novel family where one parent and 11 children presented with features of childhood apraxia of speech (the same speech disorder associated with FOXP2 variants). The genetic cause of the disorder in this family remains to be identified. Importantly, in this family the speech disorder is not systematically associated with language or literacy impairment. Brain MRI scanning in seven children revealed large grey matter reductions over the left temporoparietal region, but not in the basal ganglia, relative to typically-developing matched peers. In addition, we detected white matter reductions in the arcuate fasciculus (dorsal language stream) bilaterally, but not in the inferior fronto-occipital fasciculus (ventral language stream) nor in primary motor pathways. Our findings identify disruption of the dorsal language stream as a novel neural phenotype of developmental speech disorders, distinct from that reported in speech disorders associated with FOXP2 variants. Overall, our data confirm the early role of this stream in auditory-to-articulation transformations. 10.1093/brain/awz018_video1 awz018media1 6018582401001.


Subject(s)
Speech Disorders/genetics , Speech Disorders/physiopathology , Speech Perception/genetics , Adolescent , Adult , Brain/physiology , Brain Mapping/methods , Child , Child, Preschool , Family , Female , Humans , Language , Magnetic Resonance Imaging , Male , Nerve Net , Neural Pathways , Neuroimaging , Pedigree , Speech/physiology , Speech Perception/physiology
11.
Am J Med Genet B Neuropsychiatr Genet ; 177(8): 700-708, 2018 12.
Article in English | MEDLINE | ID: mdl-30358070

ABSTRACT

Neurexin 1 gene (NRXN1) deletions are associated with several neurodevelopmental disorders. Communication difficulties have been reported, yet no study has examined specific speech and language features of individuals with NRXN1 deletions. Here, we characterized speech and language phenotypes in 21 children (14 families), aged 1.8-17 years, with NRXN1 deletions. Deletions ranged from 74 to 702 kb and consisted mostly of either exons 1-3 or 1-5. Speech sound disorders were frequent (69%), although few were severe. The majority (57%) of children had difficulty with receptive and/or expressive language, although no homogeneous profiles of deficit were seen across semantic, morphological, or grammatical systems. Social language difficulties were seen in over half the sample (53%). All but two individuals with language difficulties also had intellectual disability/developmental delay. Overall, while speech and language difficulties were common, there was substantial heterogeneity in the severity and type of difficulties observed and no striking communication phenotype was seen. Rather, the speech and language deficits are likely part of broader concomitant neurodevelopmental profiles (e.g., intellectual disability, social skill deficits). Nevertheless, given the high rate of affectedness, it is important speech/language development is assessed so interventions can be applied during childhood in a targeted and timely manner.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Abnormalities, Multiple/genetics , Adolescent , Autistic Disorder/genetics , Calcium-Binding Proteins , Child , Child, Preschool , Developmental Disabilities/genetics , Exons , Female , Humans , Infant , Language , Male , Neural Cell Adhesion Molecules , Neurodevelopmental Disorders/genetics , Phenotype , Sequence Deletion , Speech/physiology
12.
Eur J Hum Genet ; 26(5): 676-686, 2018 05.
Article in English | MEDLINE | ID: mdl-29445122

ABSTRACT

Recurrent deletions of a ~600-kb region of 16p11.2 have been associated with a highly penetrant form of childhood apraxia of speech (CAS). Yet prior findings have been based on a small, potentially biased sample using retrospectively collected data. We examine the prevalence of CAS in a larger cohort of individuals with 16p11.2 deletion using a prospectively designed assessment battery. The broader speech and language phenotype associated with carrying this deletion was also examined. 55 participants with 16p11.2 deletion (47 children, 8 adults) underwent deep phenotyping to test for the presence of CAS and other speech and language diagnoses. Standardized tests of oral motor functioning, speech production, language, and non-verbal IQ were conducted. The majority of children (77%) and half of adults (50%) met criteria for CAS. Other speech outcomes were observed including articulation or phonological errors (i.e., phonetic and cognitive-linguistic errors, respectively), dysarthria (i.e., neuromuscular speech disorder), minimal verbal output, and even typical speech in some. Receptive and expressive language impairment was present in 73% and 70% of children, respectively. Co-occurring neurodevelopmental conditions (e.g., autism) and non-verbal IQ did not correlate with the presence of CAS. Findings indicate that CAS is highly prevalent in children with 16p11.2 deletion with symptoms persisting into adulthood for many. Yet CAS occurs in the context of a broader speech and language profile and other neurobehavioral deficits. Further research will elucidate specific genetic and neural pathways leading to speech and language deficits in individuals with 16p11.2 deletions, resulting in more targeted speech therapies addressing etiological pathways.


Subject(s)
Autistic Disorder/genetics , Chromosome Disorders/genetics , Intellectual Disability/genetics , Sequence Deletion/genetics , Speech Disorders/genetics , Adolescent , Adult , Apraxias/genetics , Autistic Disorder/epidemiology , Autistic Disorder/physiopathology , Calcium-Binding Proteins/genetics , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/epidemiology , Chromosome Disorders/physiopathology , Chromosomes, Human, Pair 16/genetics , Cohort Studies , Female , Humans , Intellectual Disability/epidemiology , Intellectual Disability/physiopathology , Language , Male , Nerve Tissue Proteins/genetics , Phenotype , Retrospective Studies , Speech/physiology , Speech Disorders/epidemiology , Speech Disorders/physiopathology , T-Box Domain Proteins/genetics
13.
Epilepsia ; 59(2): 381-388, 2018 02.
Article in English | MEDLINE | ID: mdl-29266188

ABSTRACT

OBJECTIVE: To investigate the significance of variation in ADGRV1 (also known as GPR98, MASS1, and VLGR1), MEF2C, and other genes at the 5q14.3 chromosomal locus in myoclonic epilepsy. METHODS: We studied the epilepsy phenotypes of 4 individuals with 5q14.3 deletion and found that all had myoclonic seizures. We then screened 6 contiguous genes at 5q14.3, MEF2C, CETN3, MBLAC2, POLR3G, LYSMD3, and ADGRV1, in a 95-patient cohort with epilepsy and myoclonic seizures. Of these genes, point mutations in MEF2C cause a phenotype involving seizures and intellectual disability. A role for ADGRV1 in epilepsy has been proposed previously, based on a recessive mutation in the Frings mouse model of audiogenic seizures, as well as a shared homologous region with another epilepsy gene, LGI1. RESULTS: Six patients from the myoclonic epilepsy cohort had likely pathogenic ultra-rare ADGRV1 variants, and statistical analysis showed that ultra-rare variants were significantly overrepresented when compared to healthy population data from the Genome Aggregation Database. Of the remaining genes, no definite pathogenic variants were identified. SIGNIFICANCE: Our data suggest that the ADGRV1 variation contributes to epilepsy with myoclonic seizures, although the inheritance pattern may be complex in many cases. In patients with 5q14.3 deletion and epilepsy, ADGRV1 haploinsufficiency likely contributes to seizure development. The latter is a shift from current thinking, as MEF2C haploinsufficiency has been considered the main cause of epilepsy in 5q14.3 deletion syndrome. In cases of 5q14.3 deletion and epilepsy, seizures likely occur due to haploinsufficiency of one or both of ADGRV1 and MEF2C.


Subject(s)
Epilepsies, Myoclonic/genetics , Receptors, G-Protein-Coupled/genetics , Calcium-Binding Proteins/genetics , Child , Chromosomes, Human, Pair 5/genetics , Cohort Studies , Epilepsies, Myoclonic/complications , Haploinsufficiency , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , MEF2 Transcription Factors/genetics , Male , Point Mutation , RNA Polymerase III/genetics , Syndrome
16.
Nat Genet ; 49(2): 223-237, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27992417

ABSTRACT

Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.


Subject(s)
Dystonia/genetics , Histone-Lysine N-Methyltransferase/genetics , Mutation/genetics , Adolescent , DNA-Binding Proteins/genetics , Female , Histone Methyltransferases , Histones/genetics , Humans , Lysine/genetics , Male , Methylation , Nuclear Proteins/genetics
17.
PLoS Genet ; 12(12): e1006483, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27977684

ABSTRACT

Bloom syndrome is a recessive human genetic disorder with features of genome instability, growth deficiency and predisposition to cancer. The only known causative gene is the BLM helicase that is a member of a protein complex along with topoisomerase III alpha, RMI1 and 2, which maintains replication fork stability and dissolves double Holliday junctions to prevent genome instability. Here we report the identification of a second gene, RMI2, that is deleted in affected siblings with Bloom-like features. Cells from homozygous individuals exhibit elevated rates of sister chromatid exchange, anaphase DNA bridges and micronuclei. Similar genome and chromosome instability phenotypes are observed in independently derived RMI2 knockout cells. In both patient and knockout cell lines reduced localisation of BLM to ultra fine DNA bridges and FANCD2 at foci linking bridges are observed. Overall, loss of RMI2 produces a partially active BLM complex with mild features of Bloom syndrome.


Subject(s)
Bloom Syndrome/genetics , DNA-Binding Proteins/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Neoplasms/genetics , Nuclear Proteins/genetics , Bloom Syndrome/complications , Bloom Syndrome/pathology , Chromosomal Instability/genetics , DNA Helicases/genetics , DNA, Cruciform/genetics , Genetic Predisposition to Disease , Genomic Instability , Humans , Multiprotein Complexes/genetics , Neoplasms/complications , Neoplasms/pathology , Sister Chromatid Exchange/genetics
18.
Am J Med Genet A ; 146A(15): 1972-6, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18627039

ABSTRACT

The spondylocostal dysostoses (SCD) are a clinically and genetically heterogeneous group of disorders characterized by defects of vertebral segmentation and rib abnormalities. We report on the diagnosis of two siblings with SCD. Diagnosis was first made in a female infant following a pregnancy that was complicated by early fetal hydrops and a nuchal translucency of 8.2 mm in the first trimester. The clinical picture was complicated by the co-existent diagnosis of confined placental mosaicism (CPM) for tetrasomy 9p. To our knowledge, this is the first report of CPM for tetrasomy 9p. Postnatally the diagnosis of SCD was made on the basis of radiographic findings comprising multiple anomalies of the cervical and thoracic vertebrae and multiple fused and dysplastic ribs. Radiographic investigation of other family members showed that the infant's 4-year-old sibling had fusion of four ribs on the right side, indicating a less severe form of SCD. Testing of the genes DLL3, MESP2, and LFNG did not identify a mutation, suggesting that the siblings may have a new molecular subtype of SCD.


Subject(s)
Aneuploidy , Chromosomes, Human, Pair 9 , Dysostoses/genetics , Hydrops Fetalis/genetics , Mosaicism , Abnormalities, Multiple/genetics , Amniocentesis , Child, Preschool , Chorionic Villi Sampling , Female , Humans , Infant, Newborn , Karyotyping , Male , Nuchal Translucency Measurement , Placenta/abnormalities , Placenta/ultrastructure , Pregnancy , Ribs/abnormalities , Spine/abnormalities
19.
Hum Mutat ; 25(5): 476-82, 2005 May.
Article in English | MEDLINE | ID: mdl-15832308

ABSTRACT

The introduction of molecular techniques in conjunction with classical cytogenetic methods has in recent years greatly improved the diagnostic potential for chromosomal abnormalities. In particular, microarray-comparative genomic hybridization (CGH) based on the use of BAC clones promises a sensitive strategy for the detection of DNA copy-number changes on a genomewide scale, offering a resolution as high as >30,000 "bands" (as defined by the number of BACs within the currently highest-density BAC array) [Ishkanian et al., 2004]. We have tested the possibility of further increasing this resolution using PCR fragments generated from individual BAC clones. Using this approach, we have efficiently defined the proximal and distal breakpoints in two cytogenetic cases, one duplication and one deletion, to within 5-20 kb. The results support the potential use of BAC-based PCR fragments to further improve the resolution of the microarray-CGH strategy by an order of magnitude.


Subject(s)
Chromosome Aberrations , Chromosome Deletion , Chromosomes, Artificial, Bacterial/genetics , Oligonucleotide Array Sequence Analysis/methods , Polymerase Chain Reaction/methods , Chromosome Breakage , Cytogenetic Analysis/methods , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...