Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(6)2021 06 21.
Article in English | MEDLINE | ID: mdl-34205716

ABSTRACT

Proteolytic enzymes have great significance in medicine and the pharmaceutical industry and are applied in multiple fields of life sciences. Therefore, cost-efficient, reliable and sensitive real-time monitoring methods are highly desirable to measure protease activity. In this paper, we describe the development of a new experimental approach for investigation of proteolytic enzymes. The method was designed by the combination of recombinant fusion protein substrates and bio-layer interferometry (BLI). The protease (PR) of human immunodeficiency virus type 1 (HIV-1) was applied as model enzyme to set up and test the method. The principle of the assay is that the recombinant protein substrates immobilized to the surface of biosensor are specifically cleaved by the PR, and the substrate processing can be followed by measuring change in the layer thickness by optical measurement. We successfully used this method to detect the HIV-1 PR activity in real time, and the initial rate of the signal decrease was found to be proportional to the enzyme activity. Substrates representing wild-type and modified cleavage sites were designed to study HIV-1 PR's specificity, and the BLI-based measurements showed differential cleavage efficiency of the substrates, which was proven by enzyme kinetic measurements. We applied this BLI-based assay to experimentally confirm the existence of extended binding sites at the surface of HIV-1 PR. We found the measurements may be performed using lysates of cells expressing the fusion protein, without primary purification of the substrate. The designed BLI-based protease assay is high-throughput-compatible and enables real-time and small-volume measurements, thus providing a new and versatile approach to study proteolytic enzymes.


Subject(s)
Enzyme Assays/methods , HIV Protease/metabolism , HIV-1/enzymology , Interferometry/methods , Biosensing Techniques , Cloning, Molecular , HIV Protease/genetics , HIV Protease/isolation & purification , Humans , Kinetics , Proteolysis , Recombinant Proteins , Sequence Analysis, DNA , Substrate Specificity
2.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081394

ABSTRACT

The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.


Subject(s)
Encephalitis Virus, Venezuelan Equine/enzymology , Viral Proteases/chemistry , Catalytic Domain , Molecular Dynamics Simulation , Oligopeptides/chemistry , Oligopeptides/metabolism , Substrate Specificity , Viral Proteases/genetics , Viral Proteases/metabolism
3.
J Vis Exp ; (143)2019 01 16.
Article in English | MEDLINE | ID: mdl-30735187

ABSTRACT

Proteases are intensively studied enzymes due to their essential roles in several biological pathways of living organisms and in pathogenesis; therefore, they are important drug targets. We have developed a magnetic-agarose-bead-based assay platform for the investigation of proteolytic activity, which is based on the use of recombinant fusion protein substrates. In order to demonstrate the use of this assay system, a protocol is presented on the example of human immunodeficiency virus type 1 (HIV-1) protease. The introduced assay platform can be utilized efficiently in the biochemical characterization of proteases, including enzyme activity measurements in mutagenesis, kinetic, inhibition, or specificity studies, and it may be suitable for high-throughput substrate screening or may be adapted to other proteolytic enzymes. In this assay system, the applied substrates contain N-terminal hexahistidine (His6) and maltose-binding protein (MBP) tags, cleavage sites for tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein. The substrates can be efficiently produced in Escherichia coli cells and easily purified using nickel (Ni)-chelate-coated beads. During the assay, the proteolytic cleavage of bead-attached substrates leads to the release of fluorescent cleavage fragments, which can be measured by fluorimetry. Additionally, cleavage reactions can be analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A protocol for the in-gel renaturation of assay components is also described, as partial renaturation of fluorescent proteins enables their detection based on molecular weight and fluorescence.


Subject(s)
Endopeptidases/metabolism , Enzyme Assays/methods , Recombinant Fusion Proteins/metabolism , Calibration , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Escherichia coli/metabolism , Fluorescence , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Maltose-Binding Proteins/metabolism , Oligopeptides/metabolism , Protein Renaturation/drug effects , Proteolysis , Recombinant Fusion Proteins/chemistry , Substrate Specificity/drug effects , Time Factors
4.
Data Brief ; 18: 203-208, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29896511

ABSTRACT

Data provided here are related to the research article entitled as 'A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening'. Here we describe data related to the investigation of the properties of the His6-MBP-VSQNY↓PIVQ-mApple recombinant protein substrate and its interactions with Ni-NTA magnetic beads, including the dependence of substrate attachment on incubation time and concentration. Data on the folding efficiency and conformational stability of the recombinant substrate assessed by tryptic digestion are also presented. We describe here the changes of fluorescent properties and binding abilities upon treatments commonly used for stopping enzymatic reactions: trichloroacetic acid (TCA) or heat treatment.

5.
Anal Biochem ; 540-541: 52-63, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29122614

ABSTRACT

In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection.


Subject(s)
Chromatography, High Pressure Liquid , Fluorometry , HIV Protease/metabolism , Peptide Hydrolases/metabolism , Electrophoresis, Polyacrylamide Gel , Fluorescent Dyes/chemistry , Genetic Vectors/genetics , Genetic Vectors/metabolism , HIV Protease/genetics , HIV-1/enzymology , Histidine/genetics , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Peptide Hydrolases/genetics , Potyvirus/enzymology , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Substrate Specificity
6.
Expert Rev Anti Infect Ther ; 7(10): 1235-49, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19968515

ABSTRACT

Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.


Subject(s)
Deltaretrovirus/pathogenicity , Human T-lymphotropic virus 3/pathogenicity , Animals , Anti-Retroviral Agents/therapeutic use , Deltaretrovirus/genetics , Deltaretrovirus/isolation & purification , Deltaretrovirus Infections/drug therapy , Deltaretrovirus Infections/epidemiology , Genes, Viral , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/isolation & purification , Human T-lymphotropic virus 1/pathogenicity , Human T-lymphotropic virus 2/genetics , Human T-lymphotropic virus 2/isolation & purification , Human T-lymphotropic virus 2/pathogenicity , Human T-lymphotropic virus 3/genetics , Human T-lymphotropic virus 3/isolation & purification , Humans , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...