Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Life (Basel) ; 14(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39202782

ABSTRACT

HER2-positive breast cancer is a significant cause of mortality. Overcoming trastuzumab resistance requires a deeper understanding of its molecular mechanisms to develop effective therapies. This study investigates the role of plasminogen activator inhibitor-1 (PAI1) in migration and drug resistance in trastuzumab-resistant HER2-positive breast cancer. Trastuzumab resistance poses a significant challenge in clinical management due to its association with aggressive disease behaviour and limited treatment options. This study focuses on PAI1, a key player in the TGF-ß signalling pathway, which is implicated in cancer progression and metastasis. Trastuzumab-resistant cell lines (SKBR3 and HCC1954) demonstrated markedly elevated PAI1 expression levels, up to 40-fold compared to parental lines. This elevation was accompanied by increased expression of migration markers such as Col4a1, Fibronectin, ICAM1, Timp2, and Vimentin. Through overexpression and silencing experiments, we observed that modulating PAI1 levels significantly impacts cell morphology, transitioning cells from an epithelial to mesenchymal phenotype. Importantly, combining trastuzumab with aleplasinin, a PAI1 inhibitor, synergistically reduced PAI1 expression in both parental and resistant cell lines. This suggests a potential therapeutic strategy to overcome trastuzumab resistance. These findings emphasise PAI1 as a critical mediator of migration and therapeutic response in HER2-positive breast cancer, offering insights into novel treatment approaches targeting PAI1 to improve clinical outcomes in drug resistance.

2.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201327

ABSTRACT

HER2-positive breast cancer, representing 15-20% of all breast cancer cases, often develops resistance to the HER2-targeted therapy trastuzumab. Unfortunately, effective treatments for advanced HER2-positive breast cancer remain scarce. This study aims to investigate the roles of ITGß3, and Hedgehog signaling in trastuzumab resistance and explore the potential of combining trastuzumab with cilengitide as a therapeutic strategy. Quantitative gene expression analysis was performed to assess the transcription of EMT (epithelial-mesenchymal transition) markers Slug, Snail, Twist2, and Zeb1 in trastuzumab-resistant HER2-positive breast cancer cells. The effects of ITGß3 and Hedgehog signaling were investigated. Additionally, the combination therapy of trastuzumab and cilengitide was evaluated. Acquired trastuzumab resistance induced the transcription of Slug, Snail, Twist2, and Zeb1, indicating increased EMT. This increased EMT was mediated by ITGB3 and Hedgehog signaling. ITGß3 regulated both the Hedgehog pathway and EMT, with the latter being independent of the Hedgehog pathway. The combination of trastuzumab and cilengitide showed a synergistic effect, reducing both EMT and Hedgehog pathway activity. Targeting ITGß3 with cilengitide, combined with trastuzumab, effectively suppresses the Hedgehog pathway and EMT, offering a potential strategy to overcome trastuzumab resistance and improve outcomes for HER2-positive breast cancer patients.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Integrin beta3 , Receptor, ErbB-2 , Trastuzumab , Humans , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Female , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Integrin beta3/metabolism , Integrin beta3/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Cell Line, Tumor , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hedgehog Proteins/metabolism , Snake Venoms
3.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063187

ABSTRACT

Metastatic melanoma, a deadly form of skin cancer, often develops resistance to the BRAF inhibitor drug vemurafenib, highlighting the need for understanding the underlying mechanisms of resistance and exploring potential therapeutic strategies targeting integrins and TGF-ß signalling. In this study, the role of integrins and TGF-ß signalling in vemurafenib resistance in melanoma was investigated, and the potential of combining vemurafenib with cilengitide as a therapeutic strategy was investigated. In this study, it was found that the transcription of PAI1 and p21 was induced by acquired vemurafenib resistance, and ITGA5 levels were increased as a result of this resistance. The transcription of ITGA5 was mediated by the TGF-ß pathway in the development of vemurafenib resistance. A synergistic effect on the proliferation of vemurafenib-resistant melanoma cells was observed with the combination therapy of vemurafenib and cilengitide. Additionally, this combination therapy significantly decreased invasion and colony formation in these resistant cells. In conclusion, it is suggested that targeting integrins and TGF-ß signalling, specifically ITGA5, ITGB3, PAI1, and p21, may offer promising approaches to overcoming vemurafenib resistance, thereby improving outcomes for metastatic melanoma patients.


Subject(s)
Drug Resistance, Neoplasm , Melanoma , Snake Venoms , Vemurafenib , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Snake Venoms/pharmacology , Integrin beta3/metabolism , Integrin beta3/genetics , Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Integrins/metabolism , Integrins/antagonists & inhibitors , Integrin alpha5/metabolism , Integrin alpha5/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Indoles/pharmacology , Indoles/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Biology (Basel) ; 13(6)2024 06 11.
Article in English | MEDLINE | ID: mdl-38927308

ABSTRACT

HER2-positive breast cancer, characterised by overexpressed HER2 levels, is associated with aggressive tumour behaviour and poor prognosis. Trastuzumab is a standard treatment; however, approximately 50% of patients develop resistance within one year. This study investigates the role of ITGß3 in promoting stemness and resistance in HER2-positive breast cancer cell lines (HCC1954 and SKBR3). The findings demonstrate that chronic exposure to trastuzumab upregulates stem cell markers (SOX2, OCT4, KLF4, NANOG, SALL4, ALDH, BMI1, Nestin, Musashi 1, TIM3, CXCR4). Given the documented role of RGD-binding integrins in drug resistance and stemness, we specifically investigated their impact on resistant cells. Overexpression of ITGß3 enhances the expression of these stem cell markers, while silencing ITGß3 reduces their expression, suggesting a major role for ITGß3 in maintaining stemness and resistance. Further analysis reveals that ITGß3 activates the Notch signalling pathway, known for regulating stem cell maintenance. The combination of trastuzumab and cilengitide, an integrin inhibitor, significantly decreases the expression of stem cell markers in resistant cells, indicating a potential therapeutic strategy to overcome resistance. These results identify the importance of ITGß3 in mediating stemness and trastuzumab resistance through Notch signalling in HER2-positive breast cancer, offering new approaches for enhancing treatment efficacy.

5.
Cell Biol Int ; 44(3): 848-860, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31825120

ABSTRACT

Receptor-interacting serine/threonine kinase 4 (RIPK4) and transforming growth factor-ß 1 (TGF-ß1) play critical roles in the development and maintenance of the epidermis. A negative correlation between the expression patterns of RIPK4 and TGF-ß signaling during epidermal homeostasis-related events and suppression of RIPK4 expression by TGF-ß1 in keratinocyte cell lines suggest the presence of a negative regulatory loop between the two factors. So far, RIPK4 has been shown to regulate nuclear factor-κB (NF-κB), protein kinase C (PKC), wingless-type MMTV integration site family (Wnt), and (mitogen-activated protein kinase) MAPK signaling pathways. In this study, we examined the effect of RIPK4 on the canonical Smad-mediated TGF-ß1 signaling pathway by using the immortalized human keratinocyte HaCaT cell line. According to our results, RIPK4 inhibits intracellular Smad-mediated TGF-ß1 signaling events through suppression of TGF-ß1-induced Smad2/3 phosphorylation, which is reflected in the upcoming intracellular events including Smad2/3-Smad4 interaction, nuclear localization, and TGF-ß1-induced gene expression. Moreover, the kinase activity of RIPK4 is required for this process. The in vitro wound-scratch assay demonstrated that RIPK4 suppressed TGF-ß1-mediated wound healing through blocking TGF-ß1-induced cell migration. In conclusion, our results showed the antagonistic effect of RIPK4 on TGF-ß1 signaling in keratinocytes for the first time and have the potential to contribute to the understanding and treatment of skin diseases associated with aberrant TGF-ß1 signaling.


Subject(s)
Keratinocytes/metabolism , Protein Serine-Threonine Kinases/physiology , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Smad4 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Cell Line , Cell Movement , Humans , Signal Transduction , Wound Healing
6.
Turk J Biol ; 43(4): 225-234, 2019.
Article in English | MEDLINE | ID: mdl-31582880

ABSTRACT

The epidermis, the outer layer of the skin, is formed by stratified keratinocyte layers. The self-renewal of the epidermis is provided by sustained proliferation and differentiation of the keratinocyte stem cells localized to the basal layer of the epidermis. Receptor-interacting protein kinase 4 (RIPK4) is an important regulator of keratinocyte differentiation, mutations of which are associated with congenital ectodermal malformations. In an attempt to identify the molecular basis of RIPK4's function, we applied yeast two-hybrid screen (Y2H) and found basal layer-specific keratin filament component keratin 14 (KRT14) as a novel RIPK4-interacting partner. During keratinocyte differentiation, layer-specific keratin composition is tightly regulated. Likewise, the basal layer specific KRT14/keratin 5 (KRT5) heterodimers are replaced by keratin 1 (KRT1)/keratin 10 (KRT10) in suprabasal layers. The regulation of keratin turnover is under the control of signaling associated with posttranslational modifications in which phosphorylation plays a major role. In this study, we verified the KRT14-RIPK4 interaction, which was identified with Y2H, in mammalian cells and showed that the interaction was direct by using proteins expressed in bacteria. According to our results, the N-terminal kinase domain of RIPK4 is responsible for KRT14-RIPK4 interaction; however, the RIPK4 kinase activity is dispensable for the interaction. In accordance with their interaction, RIPK4 and KRT14 colocalize within the cells, particularly at keratin filaments associated with perinuclear ring-like structures. Moreover, RIPK4 did not show any effect on KRT14/KRT5 heterodimer formation. Our results suggest that RIPK4 may regulate the keratin turnover required for keratinocyte differentiation through interacting with KRT14.

SELECTION OF CITATIONS
SEARCH DETAIL