Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 108(11): 2171-2185, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34699745

ABSTRACT

Recent studies indicate that neurodegenerative processes that appear during childhood and adolescence in individuals with Wolfram syndrome (WS) occur in addition to early brain development alteration, which is clinically silent. Underlying pathological mechanisms are still unknown. We have used induced pluripotent stem cell-derived neural cells from individuals affected by WS in order to reveal their phenotypic and molecular correlates. We have observed that a subpopulation of Wolfram neurons displayed aberrant neurite outgrowth associated with altered expression of axon guidance genes. Selective inhibition of the ATF6α arm of the unfolded protein response prevented the altered phenotype, although acute endoplasmic reticulum stress response-which is activated in late Wolfram degenerative processes-was not detected. Among the drugs currently tried in individuals with WS, valproic acid was the one that prevented the pathological phenotypes. These results suggest that early defects in axon guidance may contribute to the loss of neurons in individuals with WS.


Subject(s)
Age of Onset , Induced Pluripotent Stem Cells/cytology , Neurites , Neurons/cytology , Wolfram Syndrome/pathology , CRISPR-Cas Systems , Case-Control Studies , Endoplasmic Reticulum Stress , Gene Expression Regulation , Humans , Neurites/drug effects , Valproic Acid/pharmacology , Wolfram Syndrome/genetics
2.
Sci Rep ; 9(1): 14568, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601825

ABSTRACT

Translation of pharmacological results from in vitro cell testing to clinical trials is challenging. One of the causes that may underlie these discrepant results is the lack of the phenotypic or species-specific relevance of the tested cells; today, this lack of relevance may be reduced by relying on cells differentiated from human pluripotent stem cells. To analyse the benefits provided by this approach, we chose to focus on Friedreich ataxia, a neurodegenerative condition for which the recent clinical testing of two compounds was not successful. These compounds, namely, resveratrol and nicotinamide, were selected because they had been shown to stimulate the expression of frataxin in fibroblasts and lymphoblastoid cells. Our results indicated that these compounds failed to do so in iPSC-derived neurons generated from two patients with Friedreich ataxia. By comparing the effects of both molecules on different cell types that may be considered to be non-relevant for the disease, such as fibroblasts, or more relevant to the disease, such as neurons differentiated from iPSCs, a differential response was observed; this response suggests the importance of developing more predictive in vitro systems for drug discovery. Our results demonstrate the value of utilizing human iPSCs early in drug discovery to improve translational predictability.


Subject(s)
Friedreich Ataxia/genetics , Induced Pluripotent Stem Cells/drug effects , Iron-Binding Proteins/genetics , Neurons/drug effects , Niacinamide/pharmacology , Resveratrol/pharmacology , Apoptosis , Cell Survival , Cells, Cultured , Drug Design , Fibroblasts/cytology , Friedreich Ataxia/drug therapy , Gene Expression Profiling , Humans , Induced Pluripotent Stem Cells/cytology , Karyotyping , Neurons/cytology , Phenotype , Translational Research, Biomedical , Frataxin
3.
J Control Release ; 273: 99-107, 2018 03 10.
Article in English | MEDLINE | ID: mdl-29289570

ABSTRACT

Integration-deficient lentiviral vectors (IDLVs) are promising gene delivery tools that retain the high transduction efficiency of standard lentiviral vectors, yet fail to integrate as proviruses and are instead converted into episomal circles. These episomes are metabolically stable and support long-term expression of transgenes in non-dividing cells, exhibiting a decreased risk of insertional mutagenesis. We have embarked on an extensive study to compare the transduction efficiency of IDLVs pseudotyped with different envelopes (vesicular stomatitis, Rabies, Mokola and Ross River viral envelopes) and self-complementary adeno-associated viral vectors, serotype-9 (scAAV-9) in spinal cord tissues after intraspinal injection of mouse embryos (E16). Our results indicate that IDLVs can transduce motor neurons (MNs) at extremely high efficiency regardless of the envelope pseudotype while scAAV9 mediates gene delivery to ~40% of spinal cord motor neurons, with other non-neuronal cells also transduced. Long-term expression studies revealed stable gene expression at 7months post-injection. Taken together, the results of this study indicate that IDLVs may be efficient tools for in utero cord transduction in therapeutic strategies such as for treatment of inherited early childhood neurodegenerative diseases.


Subject(s)
Gene Transfer Techniques , Lentivirus , Motor Neurons , Spinal Cord , Adenoviridae , Animals , Female , Fetus , HEK293 Cells , Humans , Injections , Mice , Pregnancy , Uterus , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...