Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 581(Pt B): 847-859, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32818685

ABSTRACT

The development of efficient electrocatalysts for hydrogen generation is an essential task to meet future energy demand. In recent years, molybdenum ditelluride (MoTe2) has triggered incredible research interests due to intrinsic nontrivial band gap with promising semi-metallic behaviors. In this work, 2D MoTe2 nanosheets have been synthesized uniformly on graphene substrate through ultra-fast microwave-initiated approach, that shows a superior hydrogen evolution in acidic medium with low overpotential (~150 mV), low activation energy (8.4362 ± 1.5413 kJ mol-1), along with a Tafel slope of 94.5 mV/decade. Interestingly, MoTe2/graphene exhibits the enhanced electrocatalytic stability during the long cycling test, resulting an increase in specific surface area of catalyst materials. Moreover, the results from periodic plane-wave density functional theory (DFT) indicate that, the best active sites are the corner of a Mo-atom and a critical bifunctional site comprised of adjacent Mo and Te edge atoms. Furthermore, the corresponding volcano plot reveals the near thermoneutral catalytic activity of MoTe2/graphene for hydrogen generation.

2.
Materials (Basel) ; 10(5)2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28772811

ABSTRACT

This study illustrates test results and comparative literature data on the influence of isothermal aging and thermal cycling associated with Sn-1.0Ag-0.5Cu (SAC105) and Sn-3.0Ag-0.5Cu (SAC305) ball grid array (BGA) solder joints finished with ENIG and ENEPIG on the board side and ENIG on the package side compared with ImAg plating on both sides. The resulting degradation data suggests that the main concern for 0.4 mm pitch 10 mm package size BGA is package side surface finish, not board side. That is, ENIG performs better than immersion Ag for applications involving long-term isothermal aging. SAC305, with a higher relative fraction of Ag3Sn IMC within the solder, performs better than SAC105. SEM and polarized light microscope analysis show cracks propagated from the corners to the center or even to solder bulk, which eventually causes fatigue failure. Three factors are discussed: IMC, grain structure, and Ag3Sn particle. The continuous growth of Cu-Sn intermetallic compounds (IMC) and grains increase the risk of failure, while Ag3Sn particles seem helpful in blocking the crack propagation.

3.
Sci Rep ; 6: 22503, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26931353

ABSTRACT

Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2).

4.
Biosens Bioelectron ; 26(5): 2361-7, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21084182

ABSTRACT

One of the important applications for which phage-immobilized magnetoelastic (ME) biosensors are being developed is the wireless, on-site detection of pathogenic bacteria for food safety and bio-security. Until now, such biosensors have been constructed by immobilizing a landscape phage probe on gold-coated ME resonators via physical adsorption. Although the physical adsorption method is simple, the immobilization stability and surface coverage of phage probes on differently functionalized sensor surfaces need to be evaluated as a potential way to enhance the detection capabilities of the biosensors. As a model study, a filamentous fd-tet phage that specifically binds streptavidin was adsorbed on either bare or surface-functionalized gold-coated ME resonators. The surface functionalization was performed through the formation of three self-assembled monolayers with a different terminator, based on the sulfur-gold chemistry: AC (activated carboxy-terminated), ALD (aldehyde-terminated), and MT (methyl-terminated). The results, obtained by atomic force microscopy, showed that surface functionalization has a large effect on the surface phage coverage (46.8%, 49.4%, 4.2%, and 5.2% for bare, AC-, ALD-, and MT-functionalized resonators, respectively). In addition, a direct correlation of the observed surface phage coverage with the quantity of subsequently captured streptavidin-coated microbeads was found by scanning electron microscopy and by resonance frequency measurements of the biosensors. The differences in surface phage coverage on the differently functionalized surfaces may then be used to pattern the phage probe layer onto desired parts of the sensor surface to enhance the detection capabilities of ME biosensors.


Subject(s)
Bacteriophages/physiology , Biological Assay/instrumentation , Biosensing Techniques/instrumentation , Immunomagnetic Separation/instrumentation , Magnetics/instrumentation , Bacteriophages/ultrastructure , Elastic Modulus , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...