Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(27): 10556-10570, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38994429

ABSTRACT

The search for new materials can be laborious and expensive. Given the challenges that mankind faces today concerning the climate change crisis, the need to accelerate materials discovery for applications like water-splitting could be very relevant for a renewable economy. In this work, we introduce a computational framework to predict the activity of oxygen evolution reaction (OER) catalysts, in order to accelerate the discovery of materials that can facilitate water splitting. We use this framework to screen 6155 ternary-phase spinel oxides and have isolated 33 candidates which are predicted to have potentially high OER activity. We have also trained a machine learning model to predict the binding energies of the *O, *OH and *OOH intermediates calculated within this workflow to gain a deeper understanding of the relationship between electronic structure descriptors and OER activity. Out of the 33 candidates predicted to have high OER activity, we have synthesized three compounds and characterized them using linear sweep voltammetry to gauge their performance in OER. From these three catalyst materials, we have identified a new material, Co2.5Ga0.5O4, that is competitive with benchmark OER catalysts in the literature with a low overpotential of 220 mV at 10 mA cm-2 and a Tafel slope at 56.0 mV dec-1. Given the vast size of chemical space as well as the success of this technique to date, we believe that further application of this computational framework based on the high-throughput virtual screening of materials can lead to the discovery of additional novel, high-performing OER catalysts.

2.
Science ; 384(6697): eadk9227, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753786

ABSTRACT

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

3.
J Am Chem Soc ; 145(49): 26623-26631, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38039391

ABSTRACT

A palladium-catalyzed domino C-N coupling/Cacchi reaction is reported. Design of photoluminescent bis-heterocycles, aided by density functional theory calculations, was performed with synthetic yields up to 98%. The photophysical properties of the products accessed via this strategy were part of a comprehensive study that led to broad emission spectra and quantum yields of up to 0.59. Mechanistic experiments confirmed bromoalkynes as competent intermediates, and a density functional theory investigation suggests a pathway involving initial oxidative addition into the cis C-Br bond of the gem-dihaloolefin.

4.
J Am Chem Soc ; 144(19): 8454-8459, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35511107

ABSTRACT

Water oxidation is the step limiting the efficiency of electrocatalytic hydrogen production from water. Spectroelectrochemical analyses are employed to make a direct comparison of water oxidation reaction kinetics between a molecular catalyst, the dimeric iridium catalyst [Ir2(pyalc)2(H2O)4-(µ-O)]2+ (IrMolecular, pyalc = 2-(2'pyridinyl)-2-propanolate) immobilized on a mesoporous indium tin oxide (ITO) substrate, with that of an heterogeneous electrocatalyst, an amorphous hydrous iridium (IrOx) film. For both systems, four analogous redox states were detected, with the formation of Ir(4+)-Ir(5+) being the potential-determining step in both cases. However, the two systems exhibit distinct water oxidation reaction kinetics, with potential-independent first-order kinetics for IrMolecular contrasting with potential-dependent kinetics for IrOx. This is attributed to water oxidation on the heterogeneous catalyst requiring co-operative effects between neighboring oxidized Ir centers. The ability of IrMolecular to drive water oxidation without such co-operative effects is explained by the specific coordination environment around its Ir centers. These distinctions between molecular and heterogeneous reaction kinetics are shown to explain the differences observed in their water oxidation electrocatalytic performance under different potential conditions.

5.
Chem Sci ; 11(32): 8425-8432, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-34123101

ABSTRACT

The covalent attachment of molecules to 2D materials is an emerging area as strong covalent chemistry offers new hybrid properties and greater mechanical stability compared with nanoparticles. A nickel bis-aminothiophenol catalyst was grafted onto a range of 2D carbon nitrides (C3N x H y ) to form noble metal-free photocatalysts for H2 production. The hybrids produce H2 beyond 8 days with turnover numbers reaching 1360 based on nickel, a more than 3 fold higher durability than reported molecular catalyst-carbon nitride mixtures, and under longer wavelengths (>475 nm). Time-resolved spectroscopy reveals sub-microsecond electron transfer to the grafted catalyst, six orders of magnitude faster compared with similar reports of non-grafted catalysts. The photoelectrons on the catalyst have a ca. 1000 times longer half-time (7 ms) compared with bare carbon nitride (10 µs). The grafting strategy operates across a range of molecular catalyst-carbon nitride combinations, thus paving the way for robust efficient photocatalysts based on low-cost tunable components.

6.
Chem Sci ; 12(3): 946-959, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-34163861

ABSTRACT

Multi-redox catalysis requires the accumulation of more than one charge carrier and is crucial for solar energy conversion into fuels and valuable chemicals. In photo(electro)chemical systems, however, the necessary accumulation of multiple, long-lived charges is challenged by recombination with their counterparts. Herein, we investigate charge accumulation in two model multi-redox molecular catalysts for proton and CO2 reduction attached onto mesoporous TiO2 electrodes. Transient absorption spectroscopy and spectroelectrochemical techniques have been employed to study the kinetics of photoinduced electron transfer from the TiO2 to the molecular catalysts in acetonitrile, with triethanolamine as the hole scavenger. At high light intensities, we detect charge accumulation in the millisecond timescale in the form of multi-reduced species. The redox potentials of the catalysts and the capacity of TiO2 to accumulate electrons play an essential role in the charge accumulation process at the molecular catalyst. Recombination of reduced species with valence band holes in TiO2 is observed to be faster than microseconds, while electron transfer from multi-reduced species to the conduction band or the electrolyte occurs in the millisecond timescale. Finally, under light irradiation, we show how charge accumulation on the catalyst is regulated as a function of the applied bias and the excitation light intensity.

SELECTION OF CITATIONS
SEARCH DETAIL
...