Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 804: 150178, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34798733

ABSTRACT

Coral reefs are likely to be exposed to more intense cyclones under climate change. Cyclone impacts are spatially highly variable given complex hydrodynamics, and coral-specific sensitivity to wave impacts. Predicting reef vulnerability to cyclones is critical to management but requires high resolution environmental data that are difficult to obtain over broad spatial scales. Using 30m-resolution wave modelling, we tested cyclonic and non-cyclonic wave metrics as predictors of coral damage on 22 reefs after severe cyclone Ita impacted the northern Great Barrier Reef, Australia in 2014. Analyses of coral cover change accounting for the type of coral along a gradient of vulnerability to wave damage (e.g., massive, branching, Acroporids) excluded cyclone-generated surface wave metrics (derived from wave height) as important predictors. Increased bottom stress wave environment (near-bed wave orbital velocity) due to Ita (Ita-Ub) explained spatial patterns of 17% to 46% total coral cover loss only when the initial abundance of Acroporids was accounted for, and only when exceeding 35% cover. Greater coral losses occurred closer to the cyclone path irrespective of coral type. Massive and encrusting corals, however, had losses exacerbated in higher non-cyclonic bottom-wave energy environments (nc-Ub). The effect of community composition on structural vulnerability to wave damage was more important predicting damage that the magnitude of the cyclone-generated waves, especially when reefs are surveyed well beyond where damaging waves are expected to occur. Exposure to Ita-Ub was greater in typically high nc-Ub environments with relatively low cover of the most fragile morphologies explaining why these were the least affected overall. We reveal that the common surface-wave metrics of cyclone intensity may not always be able to predict spatial impacts and conclude that reef vulnerability assessments need to account for chronic wave patterns and differences in community composition in order to provide predictive tools for future conservation and restoration.


Subject(s)
Anthozoa , Cyclonic Storms , Animals , Benchmarking , Climate Change , Coral Reefs , Ecosystem
2.
Sci Rep ; 7(1): 13965, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070893

ABSTRACT

Structural complexity strongly influences biodiversity and ecosystem productivity. On coral reefs, structural complexity is typically measured using a single and small-scale metric ('rugosity') that represents multiple spatial attributes differentially exploited by species, thus limiting a complete understanding of how fish associate with reef structure. We used a novel approach to compare relationships between fishes and previously unavailable components of reef complexity, and contrasted the results against the traditional rugosity index. This study focused on damselfish to explore relationships between fishes and reef structure. Three territorial species, with contrasting trophic habits and expected use of the reef structure, were examined to infer the potential species-specific mechanisms associated with how complexity influences habitat selection. Three-dimensional reef reconstructions from photogrammetry quantified the following metrics of habitat quality: 1) visual exposure to predators and competitors, 2) density of predation refuges and 3) substrate-related food availability. These metrics explained the species distribution better than the traditional measure of rugosity, and each species responded to different complexity components. Given that a critical effect of reef degradation is loss of structure, adopting three-dimensional technologies potentially offers a new tool to both understand species-habitat association and help forecast how fishes will be affected by the flattening of reefs.


Subject(s)
Biodiversity , Coral Reefs , Ecosystem , Fishes/physiology , Molecular Conformation , Animals , Population Dynamics , Predatory Behavior , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...