Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucl Med Biol ; 134-135: 108928, 2024.
Article in English | MEDLINE | ID: mdl-38776715

ABSTRACT

The radiotherapeutic 195mPt is among the most effective Auger electron emitters of the currently studied radionuclides that have a potential theranostic application in nuclear medicine. Production of 195mPt through double neuron capture of enriched 193Ir followed by ß--decay to the radioisotope of interest carried out at the research reactor IBR-2 is described. Because of the high radiation background, radiochemical purification procedure of 195mPt from bulk of iridium was needed to be developed and is detailed here as well. For the first time, cross section and resonance integral for the reaction 194Ir(n,γ)195mIr were determined. Resonance neutrons contribution was established to exceed that of thermal neutrons, and resonance integral for the reaction 194Ir(n,γ)195mIr is calculated to be 2900 b. Specific activity of 195mPt was estimated to reach a value of 38.7 GBq/(g Pt) at IBR-2 by the end of bombardment (EOB).


Subject(s)
Neutrons , Nuclear Reactors , Radiochemistry , Radioisotopes/chemistry
2.
Inorg Chem ; 59(17): 12209-12217, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32833448

ABSTRACT

One of the key components of radiopharmaceuticals for targeting imaging and therapy is a stable bifunctional chelating system to attach radionuclides to selective delivery systems. After-effects of radioactive decay can cause the release of a radioactive isotope from its chelation agent. Perturbed angular correlation (PAC) of γ-rays has become a unique technique to study the behavior of complexes formed between a chelating agent and radionuclide in vivo (in real time) over a relevant range of concentrations (10-12 M). In the present work, four radionuclides, 111In, 111mCd, and 152, 154Eu, were investigated with diethylenetriaminepentaacetic acid (DTPA) at different pH values to determine the stability constants of the complexes as well as the effects of post-decay processes, which play a major role in determining the suitability of these complexes for application as radiopharmaceuticals (e.g., in vivo generators). The study provides a convenient parameter for the characterization of radionuclide-chelator systems using the PAC method. PAC is proven to be a suitable tool to study novel chelators and radiopharmaceutical precursors attached to radiometals.


Subject(s)
Radiochemistry/methods , Radiopharmaceuticals/chemistry , Gamma Rays , Hydrogen-Ion Concentration , Pentetic Acid/chemistry , Radioisotopes/chemistry
3.
J Environ Monit ; 14(11): 2968-75, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23001432

ABSTRACT

The effect of humic acid (HA) on U(VI) sorption on bentonite was studied in batch experiments at room temperature and ambient atmosphere at a (237)U(VI) concentration of 8.4 × 10(-11) M and HA concentration of 100 mg L(-1). The distribution of U(VI) between the liquid and solid phases was studied as a function of pH and ionic strength both in the absence and presence of HA. It was shown that the uranyl sorption on bentonite is strongly dependent on pH and the presence of humics, and the effect of the addition order was negligible. In the absence of HA an enhancement in the uptake with increasing pH was observed and a sharp sorption edge was found to take place between pH 3.2 and 4.2. The presence of HA slightly increases uranium(VI) sorption at low pH and curtails it at moderate pH, compared to the absence of HA. In the basic pH range for both the presence and absence of HA the sorption of uranium is significantly reduced, which could be attributed to the formation of soluble uranyl carbonate complexes. The influence of ionic strength on U(VI) and HA uptake by bentonite were investigated in the range of 0.01-1.0 M, and while there was an enhancement in the sorption of humic acid with increasing ionic strength, no significant effect of the ionic strength on the U(VI) sorption was observed in both the absence and presence of HA.


Subject(s)
Bentonite/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Uranium/chemistry , Adsorption , Humic Substances , Hydrogen-Ion Concentration , Osmolar Concentration , Soil Pollutants/analysis , Uranium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...