Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 23(12)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558336

ABSTRACT

In this contribution, a method based on a solid solution theory of clathrate hydrate for multiple cage occupancy, host lattice relaxation, and guest-guest interactions is presented to estimate hydrate formation conditions of binary and ternary gas mixtures. We performed molecular modeling of the structure, guest distribution, and hydrate formation conditions for the CO2 + CH4 and CO2 + CH4 + N2 gas hydrates. In all considered systems with and without N2, at high and medium content of CO2 in the gas phase, we found that CO2 was more favorable in occupying clathrate hydrate cavities than CH4 or N2. The addition of N2 to the gas phase increased the ratio concentration of CO2 in comparison with the concentration of CH4 in clathrate hydrates and made gas replacement more effective. The mole fraction of CO2 in the CO2 + CH4 + N2 gas hydrate rapidly increased with the growth of its content in the gas phase, and the formation pressure of the CO2 + CH4 + N2 gas hydrate rose in comparison to the formation pressure of the CO2 + CH4 gas hydrate. The obtained results agreed with the known experimental data for simple CH4 and CO2 gas hydrates and the mixed CO2 + CH4 gas hydrate.


Subject(s)
Carbon Dioxide/chemistry , Methane/chemistry , Nitrogen/chemistry , Computer Simulation , Ice , Pressure , Water/chemistry
2.
Phys Chem Chem Phys ; 20(18): 12637-12641, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29696292

ABSTRACT

Ozone storage capacity in clathrate hydrates formed from gas mixtures of O3 + O2 + N2 + CO2 was studied. It was found that in such system the amount of ozone included in the hydrate phase can be at least several times higher than for the experimentally described O3 + O2 + CO2 gas hydrates. The most promising thermobaric conditions and gas phase compositions for the formation of ozone containing hydrates from gas mixtures which include nitrogen are suggested on the basis of the obtained results.

SELECTION OF CITATIONS
SEARCH DETAIL
...