Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674600

ABSTRACT

Pathogenic fungi secrete numerous effectors into host cells to manipulate plants' defense mechanisms. Valsa mali, a necrotrophic fungus, severely impacts apple production in China due to the occurrence of Valsa canker. Here, we predicted 210 candidate effector protein (CEP)-encoding genes from V. mali. The transcriptome analysis revealed that 146 CEP-encoding genes were differentially expressed during the infection of the host, Malus sieversii. Proteome analysis showed that 27 CEPs were differentially regulated during the infection stages. Overall, 25 of the 146 differentially expressed CEP-encoding genes were randomly selected to be transiently expressed in Nicotiana benthamiana. Pathogenicity analysis showed that the transient expression of VM1G-05058 suppressed BAX-triggered cell death while the expression of VM1G-10148 and VM1G-00140 caused cell death in N. benthamiana. In conclusion, by using multi-omics analysis, we identified potential effector candidates for further evaluation in vivo. Our results will provide new insights into the investigation of virulent mechanisms of V. mali.

2.
Sci Rep ; 14(1): 6307, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491079

ABSTRACT

Cytospora canker has become a devastating disease of apple species worldwide, and in severe cases, it may cause dieback of entire trees. The aim of this study was to characterize the diversity of cultivable bacteria from the wild apple microbiota and to determine their antifungal ability against the canker-causing pathogenic fungi Cytospora mali and C. parasitica. Five bacterial strains belonging to the species Bacillus amyloliquefaciens, B. atrophaeus, B. methylotrophicus, B. mojavensis, and Pseudomonas synxantha showed strong antagonistic effects against pathogenic fungi. Therefore, since the abovementioned Bacillus species produce known antifungal compounds, we characterized the antifungal compounds produced by Ps. synxantha. Bacteria grown on nutritional liquid medium were dehydrated, and the active compound from the crude extract was isolated and analysed via a range of chromatographic processes. High-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance analyses revealed a bioactive antifungal compound, phenazine-1-carboxylic acid (PCA). The minimum inhibitory concentration (MIC) demonstrated that PCA inhibited mycelial growth, with a MIC of 10 mg mL-1. The results suggested that PCA could be used as a potential compound to control C. mali and C. malicola, and it is a potential alternative for postharvest control of canker disease.


Subject(s)
Ascomycota , Malus , Antifungal Agents/pharmacology , Malus/microbiology , Bacteria
3.
Plant Methods ; 19(1): 138, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042829

ABSTRACT

For molecular breeding of future apples, wild apple (Malus sieversii), the primary progenitor of domesticated apples, provides abundant genetic diversity and disease-resistance traits. Valsa canker (caused by the fungal pathogen Valsa mali) poses a major threat to wild apple population as well as to cultivated apple production in China. In the present study, we developed an efficient system for screening disease-resistant genes of M. sieversii in response to V. mali. An optimal agrobacterium-mediated transient transformation of M. sieversii was first used to manipulate in situ the expression of candidate genes. After that, the pathogen V. mali was inoculated on transformed leaves and stems, and 3 additional methods for slower disease courses were developed for V. mali inoculation. To identify the resistant genes, a series of experiments were performed including morphological (incidence, lesion area/length, fungal biomass), physiological (H2O2 content, malondialdehyde content), and molecular (Real-time quantitative Polymerase Chain Reaction) approaches. Using the optimized system, we identified two transcription factors with high resistance to V. mali, MsbHLH41 and MsEIL3. Furthermore, 35 and 45 downstream genes of MsbHLH41 and MsEIL3 were identified by screening the V. mali response gene database in M. sieversii, respectively. Overall, these results indicate that the disease-resistant gene screening system has a wide range of applications for identifying resistant genes and exploring their immune regulatory networks.

4.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36982895

ABSTRACT

The desert moss Syntrichia caninervis has proven to be an excellent plant material for mining resistance genes. The aldehyde dehydrogenase 21 (ScALDH21) gene from S. caninervis has been shown to confer tolerance to salt and drought, but it is unclear how the transgene ScALDH21 regulates tolerance to abiotic stresses in cotton. In the present work, we studied the physiological and transcriptome analyses of non-transgenic (NT) and transgenic ScALDH21 cotton (L96) at 0 day, 2 days, and 5 days after salt stress. Through intergroup comparisons and a weighted correlation network analysis (WGCNA), we found that there were significant differences between NT and L96 cotton in the plant hormone, Ca2+, and mitogen-activated protein kinase (MAPK) signaling pathways as well as for photosynthesis and carbohydrate metabolism. Overexpression of ScALDH21 significantly increased the expression of stress-related genes in L96 compared to NT cotton under both normal growth and salt stress conditions. These data suggest that the ScALDH21 transgene can scavenge more reactive oxygen species (ROS) in vivo relative to NT cotton and improve cotton resistance to salt stress by increasing the expression of stress-responsive genes, responding quickly to stress stimuli, enhancing photosynthesis and improving carbohydrate metabolism. Therefore, ScALDH21 is a promising candidate gene to improve resistance to salt stress, and the application of this gene in cotton provides new insights into molecular plant breeding.


Subject(s)
Bryophyta , Bryopsida , Transcriptome , Salt Tolerance/genetics , Bryophyta/genetics , Bryopsida/genetics , Salt Stress , Stress, Physiological/genetics , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Front Microbiol ; 12: 743831, 2021.
Article in English | MEDLINE | ID: mdl-34721341

ABSTRACT

The gut microflora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of the gut bacteria to address this absence of fungi in the larval gut. The results demonstrated that the gut bacteria were able to selectively inhibit wild apple tree-associated fungi. Among them, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC, and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identified. Activity of the compound was determined by the minimum inhibitory concentration method and electron microscopy. Moreover, our study showed that the gut bacteria could originate from noninfested apple microflora during infestation. Overall, the results showed that in newly invaded locations, A. mali larvae changed their gut microbiota and adopted new gut bacteria that prevented fungal colonization in the gut.

6.
Plant Methods ; 17(1): 79, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34281579

ABSTRACT

BACKGROUND: Xinjiang wild apple is an important tree of the Tianshan Mountains, and in recent years, it has undergone destruction by many biotic and abiotic stress and human activities. It is necessary to use new technologies to research its genomic function and molecular improvement. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability varies depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. RESULTS: In this study, we used 2 systems of vectors with paired sgRNAs targeting to MsPDS. As expected, we successfully induced the albino phenotype of calli and buds in both systems. CONCLUSIONS: We conclude that CRISPR/Cas9 is a powerful system for editing the wild apple genome and expands the range of plants available for gene editing.

7.
Sci Rep ; 9(1): 4923, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894631

ABSTRACT

The genus Agrilus comprises diverse exotic and agriculturally important wood-boring insects that have evolved efficient digestive systems. Agrilus mali Matsumara, an invasive insect, is causing extensive mortality to endangered wild apple trees in Tianshan. In this study, we present an in-depth characterization of the gut microbiota of A. mali based on high-throughput sequencing of the 16S rRNA gene and report the presence of lignocellulose-degrading bacteria. Thirty-nine operational taxonomic units (OTUs) were characterized from the larval gut. OTUs represented 6 phyla, 10 classes, 16 orders, 20 families, and 20 genera. The majority of bacterial OTUs belonged to the order Enterobacteriales which was the most abundant taxa in the larval gut. Cultivable bacteria revealed 9 OTUs that all belonged to Gammaproteobacteria. Subsequently, we examined the breakdown of plant cell-wall compounds by bacterial isolates. Among the isolates, the highest efficiency was observed in Pantoea sp., which was able to synthesize four out of the six enzymes (cellulase, cellobiase, ß-xylanase, and ß-gluconase) responsible for plant-cell wall degradation. One isolate identified as Pseudomonas orientalis exhibited lignin peroxidase activity. Our study provides the first characterization of the gut microbial diversity of A. mali larvae and shows that some cultivable bacteria play a significant role in the digestive tracts of larvae by providing nutritional needs.


Subject(s)
Cell Wall/chemistry , Coleoptera/microbiology , Enterobacteriaceae/enzymology , Gammaproteobacteria/enzymology , Gastrointestinal Microbiome/genetics , Malus/parasitology , Phylogeny , Animals , Bacterial Proteins , Biodiversity , Cell Wall/parasitology , Cellulase/genetics , Cellulase/isolation & purification , Cellulase/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/isolation & purification , Endo-1,4-beta Xylanases/metabolism , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Gastrointestinal Tract/microbiology , High-Throughput Nucleotide Sequencing , Larva/microbiology , Lignin/metabolism , Malus/chemistry , Peroxidases/genetics , Peroxidases/isolation & purification , Peroxidases/metabolism , Plant Cells/chemistry , Plant Cells/parasitology , RNA, Ribosomal, 16S/genetics , Wood/chemistry , Wood/parasitology , beta-Glucosidase/genetics , beta-Glucosidase/isolation & purification , beta-Glucosidase/metabolism
8.
Ecol Evol ; 9(3): 1160-1172, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30805149

ABSTRACT

Agrilus mali Matsumara (Coleoptera: Buprestidae) is a wood-boring beetle distributed to eastern China that occasionally injures apple species. However, this wood-boring beetle is new to the wild apple forests (Malus sieversii) of the Tianshan Mountains (western China) and has caused extensive tree mortality. The development of a biological control program for these wild apple forests is a high priority that requires exploration of the life cycle, DNA barcoding and taxonomic status of A. mali. In this study, to determine the diversity of invasive beetles, a fragment of the mitochondrial cytochrome oxidase gene was analyzed. Based on the results, beetles from Gongliu and Xinyuan counties of Xinjiang were identical but differed from those in the apple nursery of Gongliu by a single-nucleotide substitution. We summarize the taxonomic status, relationships, and genetic distances of A. mali among other Agrilus species using the Tajima-Nei model in maximum likelihood phylogeny. Analysis revealed that A. mali was closely related to Agrilus mendax and both belong to the Sinuatiagrulus subgenus. The life cycle of A. mali was investigated based on a monthly regular inspection in the wild apple forests of Tianshan. Similar to congeneric species, hosts are injured by larvae of A. mali feeding on phloem tissue, resulting in serpentine galleries constructed between bark and xylem that prevent nutrient transport and leading to tree mortality. Future studies will focus on plant physiological responses to the invasive beetles and include surveys of natural enemies for a potential classical biological control program.

9.
Genes (Basel) ; 10(2)2019 02 14.
Article in English | MEDLINE | ID: mdl-30769913

ABSTRACT

Drought and salinity are major factors limiting crop productivity worldwide. DREB (dehydration-responsive element-binding) transcription factors play important roles in plant stress response and have been identified in a wide variety of plants. Studies on DREB are focused on the A-1 (DREB1) and A-2 (DREB2) groups. Studies on A-5 group DREBs, which represent a large proportion of the DREB subfamily, is limited. In this study, we characterized and analyzed the stress tolerance function of ScDREB10, an A-5c type DREB gene from the desert moss Syntrichia caninervis. Transactivation assay in yeast showed that ScDREB10 had transactivation activity. Transient expression assay revealed that ScDREB10 was distributed both in the nucleus and cytosol of tobacco leaf epidermal cells. Overexpression of ScDREB10 significantly increased the germination percentage of Arabidopsis seeds under osmotic and salt stresses, and improved the osmotic and salt stress tolerances of Arabidopsis at the seedling stage and is associated with the expression of downstream stress-related genes and improved reactive oxygen species (ROS) scavenging ability. Our study provides insight into the molecular mechanism of stress tolerance of A-5 type DREB proteins, as well as providing a promising candidate gene for crop salt and drought stress breeding.


Subject(s)
Arabidopsis/genetics , Bryopsida/growth & development , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Arabidopsis/growth & development , Bryopsida/genetics , Droughts , Germination/genetics , Osmotic Pressure , Plants, Genetically Modified/growth & development , Salinity , Salt Tolerance/genetics , Seedlings/genetics , Nicotiana/genetics , Transcription Factors/genetics
10.
J Integr Plant Biol ; 59(8): 552-571, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28422432

ABSTRACT

The whole-plant activation of defense responses to wounding and herbivory requires systemic signaling in which jasmonates (JAs) play a pivotal role. To examine the nature of the slower cell-nonautonomous as compared to the rapid cell-autonomous signal in mediating systemic defenses in Nicotiana attenuata, reciprocal stem grafting-experiments were used with plants silenced for the JA biosynthetic gene ALLENE OXIDE CYCLASE (irAOC) or plants transformed to create JA sinks by ectopically expressing Arabidopsis JA-O-methyltransferase (ovJMT). JA-impaired irAOC plants were defective in the cell-nonautonomous signaling pathway but not in JA transport. Conversely, ovJMT plants abrogated the production of a graft-transmissible JA signal. Both genotypes displayed unaltered cell-autonomous signaling. Defense responses (17-hydroxygeranyllinalool diterpene glycosides, nicotine, and proteinase inhibitors) and metabolite profiles were differently induced in irAOC and ovJMT scions in response to graft-transmissible signals from elicited wild type stocks. The performance of Manduca sexta larvae on the scions of different graft combinations was consistent with the patterns of systemic defense metabolite elicitations. Taken together, we conclude that JA and possibly MeJA, but not JA-Ile, either directly functions as a long-distance transmissible signal or indirectly interacts with long distance signal(s) to activate systemic defense responses.


Subject(s)
Cyclopentanes/metabolism , Herbivory/physiology , Isoleucine/analogs & derivatives , Nicotiana/metabolism , Nicotiana/parasitology , Oxylipins/metabolism , Signal Transduction , Animals , Biological Transport , Gene Expression Regulation, Plant , Glycosides/metabolism , Isoleucine/metabolism , Manduca/physiology , Metabolome , Nicotine/biosynthesis , Plant Leaves/physiology , Plant Roots/metabolism , Plant Stems/metabolism , Principal Component Analysis , Protease Inhibitors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nicotiana/genetics
11.
BMC Plant Biol ; 12: 209, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23134682

ABSTRACT

BACKGROUND: Plant microRNAs (miRNAs) play key roles in the transcriptional responses to environmental stresses. However, the role of miRNAs in responses to insect herbivory has not been thoroughly explored. To identify herbivory-responsive miRNAs, we identified conserved miRNAs in the ecological model plant Nicotiana attenuata whose interactions with herbivores have been well-characterized in both laboratory and field studies. RESULTS: We identified 59 miRNAs from 36 families, and two endogenous trans-acting small interfering RNAs (tasiRNA) targeted by miRNAs. We characterized the response of the precursor and mature miRNAs to simulated attack from the specialist herbivore Manduca sexta by quantitative PCR analysis and used ir-aoc RNAi transformants, deficient in jasmonate biosynthesis, to identify jasmonate-dependent and -independent miRNA regulation. Expression analysis revealed that groups of miRNAs and tasiRNAs were specifically regulated by either mechanical wounding or wounding plus oral secretions from M. sexta larvae, and these small RNAs were accumulated in jasmonate-dependent or -independent manners. Moreover, cDNA microarray analysis indicated that the expression patterns of the corresponding target genes were correlated with the accumulation of miRNAs and tasiRNAs. CONCLUSIONS: We show that a group of miRNAs and tasiRNAs orchestrates the expression of target genes involved in N. attenuata's responses to herbivore attack.


Subject(s)
Cyclopentanes/pharmacology , Gene Expression Profiling , Herbivory/genetics , MicroRNAs/genetics , Nicotiana/genetics , Nicotiana/parasitology , Oxylipins/pharmacology , Animals , Base Sequence , Binding Sites , Conserved Sequence/genetics , Gene Expression Regulation, Plant/drug effects , Herbivory/drug effects , Manduca/drug effects , Manduca/physiology , MicroRNAs/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , Oligonucleotide Array Sequence Analysis , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/parasitology , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Time Factors , Nicotiana/drug effects
12.
J Integr Plant Biol ; 54(3): 189-206, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22313877

ABSTRACT

DICER-like (DCL) proteins produce small RNAs that silence genes involved in development and defenses against viruses and pathogens. Which DCLs participate in plant-herbivore interactions remains unstudied. We identified and stably silenced four distinct DCL genes by RNAi in Nicotiana attenuata (Torrey ex. Watson), a model for the study of plant-herbivore interactions. Silencing DCL1 expression was lethal. Manduca sexta larvae performed significantly better on ir-dcl3 and ir-dcl4 plants, but not on ir-dcl2 plants compared to wild type plants. Phytohormones, defense metabolites and microarray analyses revealed that when DCL3 and DCL4 were silenced separately, herbivore resistance traits were regulated in distinctly different ways. Crossing of the lines revealed complex interactions in the patterns of regulation. Single ir-dcl4 and double ir-dcl2 ir-dcl3 plants were impaired in JA accumulation, while JA-Ile was increased in ir-dcl3 plants. Ir-dcl3 and ir-dcl4 plants were impaired in nicotine accumulation; silencing DCL2 in combination with either DCL3 or DCL4 restored nicotine levels to those of WT. Trypsin proteinase inhibitor activity and transcripts were only silenced in ir-dcl3 plants. We conclude that DCL2/3/4 interact in a complex manner to regulate anti-herbivore defenses and that these interactions significantly complicate the already challenging task of understanding smRNA function in the regulation of biotic interactions.


Subject(s)
Herbivory/physiology , Host-Parasite Interactions/physiology , Nicotiana/metabolism , Nicotiana/parasitology , Plant Proteins/metabolism , Animals , Gene Expression Regulation, Plant/drug effects , Gene Silencing/drug effects , Genes, Plant/genetics , Herbivory/drug effects , Host-Parasite Interactions/drug effects , Larva/drug effects , Larva/physiology , Manduca/drug effects , Manduca/physiology , Mutation/genetics , Oligonucleotide Array Sequence Analysis , Phenotype , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , Nicotiana/drug effects , Nicotiana/genetics , Transcription, Genetic/drug effects , Trypsin Inhibitors/metabolism
13.
Mol Ecol Resour ; 11(5): 890-902, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21518300

ABSTRACT

Plants stably transformed to manipulate the expression of genes mediating ecological performance have profoundly altered research in plant ecology. Agrobacterium-mediated transformation remains the most effective method of creating plants harbouring a limited number of transgene integrations of low complexity. For ecological/physiological research, the following requirements must be met: (i) the regenerated plants should have the same ploidy level as the corresponding wild-type plant and (ii) contain a single transgene copy in a homozygous state; (iii) the T-DNA must be completely inserted without vector backbone sequence and all its elements functional; and (iv) the integration should not change the phenotype of the plant by interrupting chromosomal genes or by mutations occurring during the regeneration procedure. The screening process to obtain transformed plants that meet the above criteria is costly and time-consuming, and an optimized screening procedure is presented. We developed a flow chart that optimizes the screening process to efficiently select transformed plants for ecological research. It consists of segregational analyses, which select transgenic T1 and T2 generation plants with single T-DNA copies that are homozygous. Indispensable molecular genetic tests (flow cytometry, diagnostic PCRs and Southern blotting) are performed at the earliest and most effective times in the screening process. qPCR to quantify changes in transcript accumulation to confirm gene silencing or overexpression is the last step in the selection process. Because we routinely transform the wild tobacco, Nicotiana attenuata, with constructs that silence or ectopically overexpress ecologically relevant genes, the proposed protocol is supported by examples from this system.


Subject(s)
Genetic Testing/methods , Plants, Genetically Modified/genetics , Transformation, Genetic/genetics , Blotting, Southern , Ecology/methods , Flow Cytometry , Polymerase Chain Reaction , Nicotiana/genetics
14.
BMC Plant Biol ; 8: 93, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18793449

ABSTRACT

BACKGROUND: The involvement of small RNAs in cotton fiber development is under explored. The objective of this work was to directly clone, annotate, and analyze small RNAs of developing ovules to reveal the candidate small interfering RNA/microRNAs involved in cotton ovule and fiber development. RESULTS: We cloned small RNA sequences from 0-10 days post anthesis (DPA) developing cotton ovules. A total of 6691 individual colonies were sequenced from 11 ovule small RNA libraries that yielded 2482 candidate small RNAs with a total of 583 unique sequence signatures. The majority (362, 62.1%) of these 583 sequences were 24 nt long with an additional 145 sequences (24.9%) in the 21 nt to 23 nt size range. Among all small RNA sequence signatures only three mirBase-confirmed plant microRNAs (miR172, miR390 and ath-miR853-like) were identified and only two miRNA-containing clones were recovered beyond 4 DPA. Further, among all of the small RNA sequences obtained from the small RNA pools in developing ovules, only 15 groups of sequences were observed in more than one DPA period. Of these, only five were present in more than two DPA periods. Two of these were miR-172 and miR-390 and a third was identified as 5.8S rRNA sequence. Thus, the vast majority of sequence signatures were expressed in only one DPA period and this included nearly all of the 24 nt sequences. Finally, we observed a distinct DPA-specific expression pattern among our clones based upon sequence abundance. Sequences occurring only once were far more likely to be seen in the 0 to 2 DPA periods while those occurring five or more times were the majority in later periods. CONCLUSION: This initial survey of small RNA sequences present in developing ovules in cotton indicates that fiber development is under complex small RNA regulation. Taken together, the results of this initial small RNA screen of developing cotton ovules is most consistent with a model, proposed by Baulcombe, that there are networks of small RNAs that are induced in a cascade fashion by the action of miRNAs and that the nature of these cascades can change from tissue to tissue and developmental stage to developmental stage.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gossypium/genetics , MicroRNAs/genetics , RNA, Small Interfering/genetics , Cloning, Molecular , Databases, Nucleic Acid , Flowers/growth & development , Gene Expression Profiling , Genes, Plant , Gossypium/growth & development , RNA, Plant/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...