Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 31(24): 5512-5521.e5, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34717832

ABSTRACT

To learn words, humans extract statistical regularities from speech. Multiple species use statistical learning also to process speech, but the neural underpinnings of speech segmentation in non-humans remain largely unknown. Here, we investigated computational and neural markers of speech segmentation in dogs, a phylogenetically distant mammal that efficiently navigates humans' social and linguistic environment. Using electroencephalography (EEG), we compared event-related responses (ERPs) for artificial words previously presented in a continuous speech stream with different distributional statistics. Results revealed an early effect (220-470 ms) of transitional probability and a late component (590-790 ms) modulated by both word frequency and transitional probability. Using fMRI, we searched for brain regions sensitive to statistical regularities in speech. Structured speech elicited lower activity in the basal ganglia, a region involved in sequence learning, and repetition enhancement in the auditory cortex. Speech segmentation in dogs, similar to that of humans, involves complex computations, engaging both domain-general and modality-specific brain areas. VIDEO ABSTRACT.


Subject(s)
Speech Perception , Speech , Animals , Dogs , Electroencephalography , Evoked Potentials/physiology , Learning , Mammals , Speech/physiology , Speech Perception/physiology
2.
Sci Rep ; 10(1): 3989, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132562

ABSTRACT

In the human speech signal, cues of speech sounds and voice identities are conflated, but they are processed separately in the human brain. The processing of speech sounds and voice identities is typically performed by non-primary auditory regions in humans and non-human primates. Additionally, these processes exhibit functional asymmetry in humans, indicating the involvement of distinct mechanisms. Behavioural studies indicate analogue side biases in dogs, but neural evidence for this functional dissociation is missing. In two experiments, using an fMRI adaptation paradigm, we presented awake dogs with natural human speech that either varied in segmental (change in speech sound) or suprasegmental (change in voice identity) content. In auditory regions, we found a repetition enhancement effect for voice identity processing in a secondary auditory region - the caudal ectosylvian gyrus. The same region did not show repetition effects for speech sounds, nor did the primary auditory cortex exhibit sensitivity to changes either in the segmental or in the suprasegmental content. Furthermore, we did not find evidence for functional asymmetry neither in the processing of speech sounds or voice identities. Our results in dogs corroborate former human and non-human primate evidence on the role of secondary auditory regions in the processing of suprasegmental cues, suggesting similar neural sensitivity to the identity of the vocalizer across the mammalian order.


Subject(s)
Auditory Perception/physiology , Brain/physiology , Animals , Auditory Cortex/diagnostic imaging , Auditory Cortex/physiology , Brain/diagnostic imaging , Cues , Dogs , Female , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...