Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 107(11): 113601, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-22026665

ABSTRACT

Continuous variable entanglement between two modes of a radiation field is usually studied at optical frequencies. Here we demonstrate experiments that show the entanglement between microwave photons of different energy in a broadband squeezed beam. We use a Josephson parametric amplifier to generate the two-mode correlated state and detect all four quadrature components simultaneously in a two-channel heterodyne setup using amplitude detectors. Analyzing two-dimensional phase space histograms for all possible pairs of quadratures allows us to determine the full covariance matrix, which is in good agreement with the one expected for a two-mode squeezed state.

2.
Phys Rev Lett ; 106(24): 243601, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21770569

ABSTRACT

Creating a train of single photons and monitoring its propagation and interaction is challenging in most physical systems, as photons generally interact very weakly with other systems. However, when confining microwave frequency photons in a transmission line resonator, effective photon-photon interactions can be mediated by qubits embedded in the resonator. Here, we observe the phenomenon of photon blockade through second-order correlation function measurements. The experiments clearly demonstrate antibunching in a continuously pumped source of single microwave photons measured by using microwave beam splitters, linear amplifiers, and quadrature amplitude detectors. We also investigate resonance fluorescence and Rayleigh scattering in Mollow-triplet-like spectra.

3.
Phys Rev Lett ; 106(22): 220503, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21702587

ABSTRACT

A wide range of experiments studying microwave photons localized in superconducting cavities have made important contributions to our understanding of the quantum properties of radiation. Propagating microwave photons, however, have so far been studied much less intensely. Here we present measurements in which we reconstruct the quantum state of itinerant single photon Fock states and their superposition with the vacuum by analyzing moments of the measured amplitude distribution up to fourth order. Using linear amplifiers and quadrature amplitude detectors, we have developed efficient methods to separate the detected single photon signal from the noise added by the amplifier. From our measurement data we have also reconstructed the corresponding Wigner function.

4.
Phys Rev Lett ; 105(16): 163601, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-21230970

ABSTRACT

The quantum properties of electromagnetic, mechanical or other harmonic oscillators can be revealed by investigating their strong coherent coupling to a single quantum two level system in an approach known as cavity quantum electrodynamics (QED). At temperatures much lower than the characteristic energy level spacing the observation of vacuum Rabi oscillations or mode splittings with one or a few quanta asserts the quantum nature of the oscillator. Here, we study how the classical response of a cavity QED system emerges from the quantum one when its thermal occupation-or effective temperature-is raised gradually over 5 orders of magnitude. In this way we explore in detail the continuous quantum-to-classical crossover and demonstrate how to extract effective cavity field temperatures from both spectroscopic and time-resolved vacuum Rabi measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...