Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 66(3): 288-94, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23523625

ABSTRACT

Cephalopod culture is expected to increase in the near future and sperm cryopreservation would be a valuable tool to guarantee sperm availability throughout the year and to improve artificial insemination programs. We have studied the tolerance of spermatophores from the oceanic squid Illex coindetii to several cryoprotectants, in two toxicity experiments and a cryopreservation test. Five permeating cryoprotectants were tested: Dimethyl sulfoxide (Me2SO), methanol, glycerol, propylene glycol and ethylene glycol. In the first experiment, spermatophores were exposed to the five cryoprotectants at 5% (v/v) and 15% (v/v) at 4 °C for 5 min. In the second experiment, spermatophores were exposed to the cryoprotectants at 15% using different exposure times: 5, 15 and 30 min. In a third experiment, we tested two cryopreservation protocols: LN2 vapor or -80 °C freezer, using a 15% cryoprotectant and 15 or 30 min of exposure. Viability and mitochondrial activity were assessed using Mitotracker deep red, YOPRO1 and Hoechst 33342, by flow cytometry. Spermatozoa in this species remain viable after cryoprotectant exposure but their quality decreased considerably after cryopreservation, only 5-10% of spermatozoa being motile. Flow cytometry demonstrated that Me2SO may be the most appropriate cryoprotectant for I. coindetii spermatozoa, and shows a first approach on cephalopod sperm cryopreservation, opening new possibilities for the research and culture of this group of molluscs.


Subject(s)
Cephalopoda/cytology , Cryopreservation/veterinary , Semen Preservation/veterinary , Animals , Cell Survival , Cryopreservation/methods , Cryoprotective Agents/toxicity , Male , Mitochondria/metabolism , Semen Preservation/methods , Sperm Motility , Spermatogonia/cytology , Spermatogonia/drug effects , Spermatogonia/metabolism , Spermatogonia/ultrastructure
2.
J Exp Biol ; 214(Pt 3): 501-8, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21228209

ABSTRACT

Like many physiological systems synchronised to the light:dark cycle, retinomotor movements in 'lower' vertebrates are controlled by both the ambient illumination and input from endogenous circadian oscillators. In the present study, we examine the relative influence of these two signals in various species of teleost fish with different latitudes of origin. We find equatorial species show very strong endogenous control. The cones of the glowlight tetra, for example, continue to go through undiminished cycles of contraction and relaxation that mirror the previous light:dark cycle for at least two weeks in continual darkness. To quantify the relative effectiveness of the ambient light compared with endogenous signals in causing cone contraction, the degree to which seven teleost species responded to light during the dark phase of their light:dark cycle was examined. In this situation the retina receives conflicting instructions; while the light is acting directly to cause light adaptation, any endogenous signal tends to keep the retinal elements dark adapted. The further from the equator a species originated, the more its cones contracted in response to such illumination, suggesting animals from higher latitudes make little use of endogenous oscillators and rely more on ambient illumination to control behaviours. Equatorial species, however, rely on internal pacemakers to a much greater degree and are relatively insensitive to exogenous light signals. Because these data are consistent with published observations in systems as diverse as melatonin synthesis in Arctic reindeer and the behaviour of regional populations of Drosophila, latitudinal clines in the efficacy of circadian oscillators may be a common feature among animals.


Subject(s)
Fishes/physiology , Light , Photic Stimulation , Retinal Cone Photoreceptor Cells/physiology , Animals , Circadian Rhythm , Darkness , Geography , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...