Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 126(1): 3-15, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34978833

ABSTRACT

Fluorinated carboxylic acids and their radicals are becoming more prevalent in environmental waters and soils as they have been produced and used for numerous commercial applications. Understanding the thermochemical properties of fluorinated carboxylic acids will provide insights into the stability and reaction paths of these molecules in the environment, in body fluids, and in biological and biochemical processes. Structures and thermodynamic properties for over 50 species related to fluorinated carboxylic acids with two and three carbons are determined with density functional computational calculations B3LYP, M06-2X, and MN15 and higher ab initio levels CBS-QB3, CBS-APNO, and G4 of theory. The lowest energy structures, moments of inertia, vibrational frequencies, and internal rotor potentials of each target species are determined. Standard enthalpies of formation, ΔfH298°, from CBS-APNO calculations show the smallest standard deviation among methods used in this work. ΔfH298° values are determined via several series of isodesmic and/or isogyric reactions. Enthalpies of formation are determined for fluorinated acetic and propionic acids and their respective radicals corresponding to the loss of hydrogen and fluorine atoms. Heat capacities as a function of temperature, Cp(T), and entropy at 298 K, S298°, are determined. Thermochemical properties for the fluorinated carbon groups used in group additivity are also developed. Bond dissociation energies (BDEs) for the carbon-hydrogen, carbon-fluorine, and oxygen-hydrogen (C-H, C-F, and O-H BDEs) in the acids are reported. The C-H, C-F, and O-H bond energies of the fluorinated carboxylic acids are in the range of 89-104, 101-125, and 109-113 kcal mol-1, respectively. General trends show that the O-H bond energies on the acid group increase with the increase in the fluorine substitution. The strong carbon fluorine bonds in a fluorinated acid support the higher stability of the perfluorinated acids in the environment.


Subject(s)
Carboxylic Acids , Hot Temperature , Entropy , Thermodynamics
2.
J Phys Chem A ; 125(24): 5375-5384, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34111923

ABSTRACT

Fluorinated olefins are valued chemicals in industry, especially as heat transfer fluids in refrigeration applications. As these volatile compounds are widely used, they may be released into the atmosphere, and investigation of their reactions in the atmosphere are therefore of importance. The kinetic analysis of the reaction mechanisms of trifluoroethene (CF2═CHF) with hydroxyl radicals is studied using computational chemistry at the M06-2X level with the 6-311++G(2d,d,p) and aug-cc-pVDZ basis sets as well as the composite CBS-QB3 method. Rate coefficients for the proposed mechanisms are calculated using transition state theory (TST) with tunneling corrections. The calculated rate constants for OH addition to CF2═CHF are in excellent agreement with experimental values. Kinetic parameters as a function of temperature and pressure are evaluated for the chemically activated formation and unimolecular dissociation of hydroxylfluoroalkyl intermediates. Important forward reactions result in adduct stabilization, H atoms, hydrogen fluoride (HF) via molecular elimination, and formation of fluorinated carbonyl radicals with CF2(═O) and CHF(═O) product channels. Stabilization of initial adducts along with HF elimination are important reaction pathways under high pressure and low temperatures. Important HF eliminations and H atom transfers primarily involve H atoms from the hydroxyl group, as the C-H bonds on or adjacent to carbons with F atoms are stronger and show high barriers to H atom transfer.

3.
J Phys Chem A ; 124(24): 4905-4915, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32432474

ABSTRACT

Lignin is the most complex component of biomass, and development of a detailed chemical kinetic model for biomass pyrolysis mainly relies on the understanding of the lignin decomposition kinetics. para-Coumaryl alcohol (p-CMA, HOPh-CH═CH-CH2OH), the focus of our analysis, is the simplest of the lignin monomers (monolignols) containing a typical side-chain double bond and both alkyl- and phenolic-type OH-groups. In parts I and II of our work (Asatryan, R. J. Phys. Chem. A 2019, 123, 2570-2585; Hudzik, J. M. J. Phys. Chem. A 2020, current issue), we created a detailed potential energy surface (PES) and performed a kinetic analysis of chemically activated, unimolecular, and bimolecular reactions pathways for p-CMA + OH. Reaction pathways analyzed include dissociation, intramolecular abstraction, group transfer, and elimination processes. The α- and ß-carbon addition reactions generate 1,3- (RA1) and 1,2-diol (RB1) adduct radicals, respectively. Well depths are approximately 29 and 41 kcal/mol below the p-CMA + OH entrance level. Kinetic analysis aides in determining the major pathways for our conventional and fractional pyrolysis experiments. The current paper focuses on the H-abstraction reactions via H, OH, and CH3 light ("pool") radicals from p-CMA. The thermochemical properties of all stable, radical, and transition-state species were determined using the ωB97XD density functional theory (DFT) and higher-level CBS-QB3 composite methods. Barrier heights from the prereaction complexes, for OH-radical abstractions, to the transition states for the propanoid side chain are compared to the model H-abstraction reactions of allyl alcohol (AA) with OH and p-CMA with H and CH3 radicals. The lowest-energy, most stable, p-CMA radical formed is at the C9 allylic position (p-CMA-C9j) with exothermicity of 26.63, 41.32, and 27.34 kcal/mol for H, OH, and CH3, respectively. For OH-radical abstraction at this position, our findings are consistent with corresponding data on AA + OH at 37.44 kcal/mol and similar to that of RB1. A similar stable radical with an exothermicity of 34.95 kcal/mol occurs for the phenol hydroxyl group, generating the p-CMA-O4j radical. H-abstraction pathways are considered in relation to other major pathways previously considered for p-CMA + OH reactions including H-atom shifts, dehydration, and ß-scission reactions. Derived rate coefficients for substituted phenols can be utilized in detailed kinetic models for lignin/biomass pyrolysis.

4.
J Phys Chem A ; 124(24): 4875-4904, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32432475

ABSTRACT

Monolignols are precursor units and primary products of lignin pyrolysis. The currently available global (lumped) and semidetailed kinetic models, however, are lacking the comprehensive decomposition kinetics of these key intermediates in order to advance toward the fundamentally based detailed chemical-kinetic models of biomass pyrolysis. para-Coumaryl alcohol (HOPh-CH═CH-CH2OH, p-CMA) is the simplest of the three basic monolignols containing a typical side-chain double bond and both alkyl and phenolic type OH groups. The two other monomers additionally contain one and two methoxy groups, respectively, attached to the benzene ring. Previously, we developed a detailed fundamentally based mechanism for unimolecular decomposition of p-CMA (as well as its truncated allyl and cinnamyl alcohol models) and explored its reactivity toward H radicals generated during pyrolysis. The reactions of p-CMA with pyrolytic OH radicals is another set of key reactions particularly important for understanding the formation mechanisms of a wide variety of oxygenates in oxygen-deficit (anaerobic) conditions and the role of the lignin side groups in pyrolysis pathways. In Part I of the current study (J. Phys. Chem. A, 2019, 123, 2570-2585), we reported a detailed potential energy (enthalpy) surface analysis of the reaction OH + p-CMA with suggestions for a variety of chemically activated, unimolecular, and bimolecular reaction pathways. In Part II of our work, we provide a detailed kinetic analysis of the major reaction channels to evaluate their significance and possible impacts on product distributions. Temperature- and pressure-dependent rate constants are calculated using the quantum Rice-Ramsperger-Kassel method and the master equation analysis for falloff and stabilization. Enthalpies of formation, entropies, and heat capacities are calculated using density functional theory and higher-level composite methods for stable molecules, radicals, and transition-state species. A significant difference between well depths for the chemically activated adduct radicals, [p-CMA-OH]*, is found for the α- and ß-carbon addition reactions to generate the 1,3- and 1,2-diol radicals, respectively. This is due to the synergistic effect from conjugation of the proximal radical center with the aromatic ring and the strong H-bonding interaction between vicinal OH groups in the ß-adduct (1,2-diol radical). Both adducts undergo isomerization and low-energy transformations, however, with different kinetic efficiencies because of the difference in stabilization energies. Reaction pathways include dissociation, intramolecular abstraction, atom and group transfers, and elimination. Of particular interest is a roaming-like low-energy dehydration reaction to form O-centered intermediate radicals. The kinetic analysis demonstrated the feasible formation of various products detected in pyrolysis experiments, suggesting that the gas-phase reactions of OH radicals can be a key process to form major products and complex oxygenates during lignin pyrolysis. Our preliminary experiments involving pyrolysis of the vaporized monomers support this basic statement. A novel mechanism for the formation of benzofuran, identified in experimentation, is also provided based on the potential conversions of hydroxyphenylacetaldehyde and corresponding isomers, which are kinetically favored products.

5.
J Phys Chem A ; 123(37): 8017-8027, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31424214

ABSTRACT

Density functional theory (DFT) and composite ab initio based calculations are performed on trifluoroethane along with intermediate radicals, parent molecules of the radicals, and products related to the reaction of hydroxyl radical with 1,1,2-trifluoroethene, as a reference for hydrofluoroolefins (HFO). Potential energy barriers for internal rotations have been computed. Calculated torsional potentials are incorporated into the determination of entropy, S°298, and heat capacities as a function of temperature, Cp(T), for each target molecule. Six isodesmic or isogyric reactions and five calculation methods are used to determine heats of formation at 298 K (ΔfH298) in kcal mol-1 of each target species. The CBS-APNO method shows the best agreement with experimental data in comparisons from 16 reference reactions on ΔrxnH of each method. The lowest configuration structures of each target species are reported. Intramolecular hydrogen bonds between the hydroxyl hydrogen atom and the fluorine atom on the adjacent carbon can stabilize molecules by up to 3 kcal mol-1. R-OH bond dissociation energies are observed to increase with the number of fluorine atoms on the carbon connected to hydroxy group. Recommended ΔfH298 values in kcal mol-1 derived from the most stable conformers are CF2(OH)CH2F (-213.0), CF2(O•)CH2F (-148.6), CF2(OH)C•FH (-162.4), CHF2CHFOH (-207.5), CHF2C•FOH (-158.3), C•F2CHFOH (-155.5), CHF2CHFO• (-150.4), CF3CH2OH (-212.5), and CF3C•HOH (-167.9).

6.
J Phys Chem A ; 123(13): 2570-2585, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30848901

ABSTRACT

Cinnamyl alcohols such as p-coumaryl alcohol ( p-CMA) are lignin models and precursors (monolignols) and the most important primary products of lignin pyrolysis. However, the detection of monomers is not straightforward since they either undergo secondary transformations or repolymerize to contribute to the char formation. Both concerted-molecular and free-radical pathways are involved in these processes. Our recent fundamentally based theoretical and low-temperature matrix-isolation-EPR studies of cinnamyl alcohols highlighted the role of side-chain reactivity in diversity of pyrolysis products and provided a network of the chemically activated H + p-CMA reactions ( Asatryan J. Phys. Chem. A, 2017 , 121 , 3352 - 3371 ). The readily available hydroxyl radicals also can trigger a cascade of free-radical processes. Here, we present a comprehensive potential energy surface (PES) analysis of the OH + p-CMA reaction using various DFT and ab initio protocols. Since the p-CMA involves both an alkyl OH-group and a side-chain double bond, the title reaction can also serve as a relevant model for reactions of unsaturated alcohols with hydroxyl radicals to form various oxygenates including polyhydric alcohols which are abundant in nature. The newly identified pathways suggest certain alternatives to the known radical reactions. Of particular interest are the roaming-like low-energy dehydration reactions to generate a variety of O- and C-centered intermediate radicals, which are primarily transformed into the phenolic compounds observed in pyrolysis experiments. Several concerted unimolecular decomposition pathways for p-CMA are also revealed, not considered previously, such as the migration of terminal OH-group, and/or its splitting over the ipso-C and ortho-C atoms of the benzene ring to form bicyclic oxispiro- and chromene compounds represented in natural lignin.

7.
J Phys Chem A ; 123(3): 650-665, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30511860

ABSTRACT

Thermochemical properties of fluorinated aldehydes are important for understanding their stability and reactions in the environment and in thermal processes. Structures and thermochemical properties of C1 to C3 fluorinated aldehydes are determined by use of computational chemistry. Standard enthalpies of formation for 30 C2- and C3-fluorinated aldehydes and 31 radicals were calculated with 11 different ab initio and density functional theory methods: CBS-APNO, CBS-4M, CBS-QB3, M06-2X, ωB97X, B3LYP, G-2, G-3, G-4, and W1U via several series of isodesmic reactions. Entropy, S°298, and heat capacities, C p( T)'s (300 ≤ T/K ≤ 1500) from vibration, translation, and external rotation contributions are calculated on the basis of the vibration frequencies and structures obtained from the B3LYP/6-31++G(d,p) density functional method. Potential barriers for the internal rotations are also from this method and used to calculate hindered rotor contributions to S°298 and Cp(T)'s using direct integration over energy levels of the internal rotational potential curves. Literature data on standard enthalpies of formation of fluorinated aldehydes are compared. Thermochemical properties for the fluorinated carbon groups CO/C/F, C/CO/F3, C/CO/F/H2, C/C/CO/F/H, C/C/CO/F2, and C/C/CO/F/H are developed. Non-next nearest neighbor terms for the strong interactions resulting from fluorine atoms on adjacent and on second nearest carbon atoms are unfortunately, needed. The required non-next-neighbor interactions significantly reduce the practical application of group additivity for thermochemical properties of highly fluorinated halocarbons.

8.
J Phys Chem A ; 121(39): 7309-7323, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28862457

ABSTRACT

Interest in high-energy substituted furans has been increasing due to their occurrence in biofuel production and their versatility in conversion to other useful products. Methylfurans are the simplest substituted furans and understanding their reaction pathways, thermochemical properties, including intermediate species stability, and chemical kinetics would aid in the study of larger furans. Furan ring C-H bonds have been shown to be extremely strong, approximately 120 kcal mol-1, due in part to the placement of the oxygen atom and aromatic-like resonance, both within the ring. The thermochemistry and kinetics of the oxidation of 2-methyfuran radical at position 5 of the furan ring, 2-methyl-5-furanyl radical (2MF5j), is analyzed. The resulting chemically activated species, 2MF5OOj radical, has a well depth of 51 kcal mol-1 below the 2MF5j + O2 reactants; this is 4-5 kcal mol-1 deeper than that of phenyl and vinyl radical plus O2, with both of these reactions known to undergo chain branching. Important, low-energy reaction pathways include chain branching dissociations, intramolecular abstractions, group transfers, and radical oxygen additions. Enthalpies of formation, entropies, and heat capacities for the stable molecules, radicals, and transition-state species are analyzed using computational methods. Calculated ΔH°f 298 values were determined using an isodesmic work reaction from the CBS-QB3 composite method. Elementary rate parameters are from saddle point transition-state structures and compared to variational transition-state analysis for the barrierless reactions. Temperature- and pressure-dependent rate constants which are calculated using QRRK and master equation analysis is used for falloff and stabilization.

9.
J Phys Chem A ; 121(23): 4523-4544, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28459571

ABSTRACT

Reaction pathways are influenced by thermochemical properties, species stability, and chemical kinetics. Understanding these factors allows for an understanding of the reaction paths and formation of intermediate species. Enthalpies of formation (ΔHf,298°), entropies (S298°), heat capacities (Cp(T)), oxygen-hydrogen (O-H), oxygen-oxygen (O-O), and (R-O) bond dissociation energies (BDEs) are reported for hydroxyl and hydroperoxide substituted furan, methylfuran, and methoxyfuran species. Standard enthalpies of formation for parent and radical species have been determined using density functional theory B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), and M06-2X/6-31G(d,p) along with higher-level CBS-QB3 and CBS-APNO composite methods. Isodesmic work reactions were employed to improve accuracy by canceling error and show consistency between the levels of theory. Corresponding O-H and O-O BDEs are determined and compared to other similar structures. The stability of the furan moiety coupled with the double-bond-forming capability of the oxygen moiety results in a number of bond energies significantly lower than one might have expected. Substituted hydroperoxides are calculated to have ROO-H BDEs between 86.9 and 94.2 kcal mol-1, and their RO-OH BDEs show a large 49 kcal mol-1 range of -2.3-46.8 kcal mol-1. Substituted alcohols also show a wide 48 kcal mol-1 range with RO-H BDEs, ranging from 59.3 to 106.9 kcal mol-1. Bond lengths of parent and radical species are presented to highlight potential bonds of interest leading to furan ring opening. Group additivity is discussed, and groups for substituted furan, methylfuran, and methoxyfuran species are derived. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the S298° and Cp(T) values.

10.
J Phys Chem A ; 121(18): 3352-3371, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28406634

ABSTRACT

The fractional pyrolysis of lignin model compound para-coumaryl alcohol (p-CMA) containing a propanoid side chain and a phenolic OH group was studied using the System for Thermal Diagnostic Studies at temperatures from 200 to 900 °C, in order to gain mechanistic insight into the role of large substituents in high-lignin feedstocks pyrolysis. Phenol and its simple derivatives p-cresol, ethyl-, propenyl-, and propyl-phenols were found to be the major products predominantly formed at low pyrolysis temperatures (<500 °C). A cryogenic trapping technique was employed combined with EPR spectroscopy to identify the open-shell intermediates registered at pyrolysis temperatures above 500 °C. These were characterized as radical mixtures primarily consisting of oxygen-linked conjugated radicals. A comprehensive potential energy surface analysis of p-CMA and p-CMA + H atom systems was performed using various DFT protocols to examine the possible role of concerted molecular eliminations and free-radical mechanisms in the formation of major products. Other significant unimolecular concerted reactions along with formation and decomposition of primary radicals are also described and evaluated. The calculations suggest that a set of the chemically activated secondary radical channels is relevant to the low temperature product formation under fractional pyrolysis conditions.

11.
J Phys Chem A ; 120(35): 6998-7010, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27483031

ABSTRACT

Oxygenated fluorocarbons are routinely found in sampling of environmental soils and waters as a result of the widespread use of fluoro and chlorofluoro carbons as heat transfer fluids, inert materials, polymers, fire retardants and solvents; the influence of these chemicals on the environment is a growing concern. The thermochemical properties of these species are needed for understanding their stability and reactions in the environment and in thermal process. Structures and thermochemical properties on the mono- to trifluoromethanol, CH3-xFxOH, and fluoromethyl hydroperoxide, CH3-xFxOOH (1 ≤ x ≤ 3), are determined by CBS-QB3, CBS-APNO, and G4 calculations. Entropy, S°298, and heat capacities, Cp(T)'s (300 ≤ T/K ≤ 1500) from vibration, translation, and external rotation contributions are calculated on the basis of the vibration frequencies and structures obtained from the B3LYP/6-31+G(d,p) density functional method. Potential barriers for the internal rotations are also calculated from this method and used to calculate hindered rotor contributions to S°298 and Cp(T)'s using direct integration over energy levels of the internal rotational potentials. Standard enthalpies of formation, ΔfH°298 (units in kcal mol(-1)) are CH2FOOH (-83.7), CHF2OOH (-138.1), CF3OOH (-193.6), CH2FOO(•) (-44.9), CHF2OO(•) (-99.6), CF3OO(•) (-153.8), CH2FOH (-101.9), CHF2OH (-161.6), CF3OH (-218.1), CH2FO(•) (-49.1), CHF2O(•) (-97.8), CF3O(•) (-150.5), CH2F(•) (-7.6), CHF2(•) (-58.8), and CF3(•) (-112.6). Bond dissociation energies for the R-OOH, RO-OH, ROO-H, R-OO(•), RO-O(•), R-OH, RO-H, R-O(•), and R-H bonds are determined and compared with methyl hydroperoxide to observe the trends from added fluoro substitutions. Enthalpy of formation for the fluoro-hydrocarbon oxygen groups C/F/H2/O, C/F2/H/O, C/F3/O, are derived from the above fluorinated methanol and fluorinated hydroperoxide species for use in Benson's Group Additivity. It was determined that fluorinated peroxides require interaction terms O/CH2F/O, O/CHF2/O, and O/CF3/O, as opposed to the common (O/C/O) group in hydrocarbons, resulting from interactions of the peroxide oxygen with the fluorines. Hydrogen bond dissociation increment (HBI) groups are also developed.

12.
Chemphyschem ; 17(13): 1983-92, 2016 Jul 04.
Article in English | MEDLINE | ID: mdl-26990491

ABSTRACT

Oxirane structures are important in organic synthesis, and they are important initial products in the oxidation reactions of alkyl radicals. The thermochemical properties (enthalpy of formation, entropy, and heat capacity) for the reaction steps of the unimolecular oxiranyl radical dissociation reaction are determined and compared with the available literature. The overall ring opening and subsequent steps involve four types of reactions: ß-scission ring opening, intramolecular hydrogen transfer, ß-scission hydrogen elimination, and ß-scission methyl radical elimination. The enthalpies of formation of the transition states are determined and evaluated using six popular Density Functional Theory (DFT) calculation methods (B3LYP, B2PLYP, M06, M06-2X, ωB97X, ωB97XD), each combined with three different basis sets. The DFT enthalpy values are compared with five composite calculation methods (G3, G4, CBS-QB3, CBS-APNO, W1U), and by CCSD(T)/aug-cc-pVTZ. Kinetic parameters are determined versus pressure and temperature for the unimolecular dissociation pathways of an oxiranyl radical, which include the chemical activation reactions of the ring-opened oxiranyl radical relative to the ring-opening barrier. Multifrequency quantum Rice Ramsperger Kassel (QRRK) analysis is used to determine k(E) with master equation analysis for falloff. The major overall reaction pathway at lower combustion temperatures is oxiranyl radical dissociation to a methyl radical and carbon monoxide. Oxiranyl radical dissociation to a ketene and hydrogen atom is the key reaction path above 700 K.

13.
J Phys Chem A ; 120(3): 433-51, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26784854

ABSTRACT

Cyclopentadienone has one carbonyl and two olefin groups resulting in 4n + 2 π-electrons in a cyclic five-membered ring structure. Thermochemical and kinetic parameters for the initial reactions of cyclopentadienone radicals with O2 and the thermochemical properties for cyclopentadienone-hydroperoxides, alcohols, and alkenyl, alkoxy, and peroxy radicals were determined by use of computational chemistry. The CBS-QB3 composite and B3LYP density functional theory methods were used to determine the enthalpies of formation (ΔfH°298) using the isodesmic reaction schemes with several work reactions for each species. Entropy and heat capacity, S°(T) and Cp°(T) (50 K ≤ T ≤ 5000 K) are determined using geometric parameters, internal rotor potentials, and frequencies from B3LYP/6-31G(d,p) calculations. Standard enthalpies of formation are reported for parent molecules as cyclopentadienone, cyclopentadienone with alcohol, hydroperoxide substituents, and the cyclopentadienone-yl vinylic, alkoxy, and peroxy radicals corresponding to loss of a hydrogen atom from the carbon and oxygen sites. Entropy and heat capacity vs temperature also are reported for the parent molecules and for radicals. The thermochemical analysis shows The R(•) + O2 well depths are deep, on the order of 50 kcal mol(-1), and the R(•) + O2 reactions to RO + O (chain branching products) for cyclopentadienone-2-yl and cyclopentadienone-3-yl have unusually low reaction (ΔHrxn) enthalpies, some 20 or so kcal/mol below the entrance channels. Chemical activation kinetics using quantum RRK analysis for k(E) and master equation for falloff are used to show that significant chain branching as a function of temperature and pressure can occur when these vinylic radicals are formed.

14.
J Phys Chem A ; 119(38): 9857-78, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26295335

ABSTRACT

Exo-tricyclo[5.2.1.0(2,6)]decane (TCD) or exo-tetrahydrodicyclopentadiene is an interesting strained ring compound and the single-component high-energy density hydrocarbon fuel known as JP-10. Important initial reactions of TCD at high temperatures could cleave a strained carbon-carbon (C-C) bond in the ring system creating diradicals also constrained by the remaining ring system. This study determines the thermochemical properties of these diradicals (TCD-H2 mJ-nJ where m and n correspond to the cleaved carbons sites) including the carbon-carbon bond dissociation energy (C-C BDE) corresponding to the cleaved TCD site. Thermochemical properties including enthalpies (ΔH°f298), entropies (S(T)), heat capacities (Cp(T)), and C-H and C-C BDEs for the parent (TCD-H2 m-n), radical (TCD-H2 mJ-n and m-nJ), diradical (TCD-H2 mJ-nJ), and carbene (TCD-H2 mJJ-n and m-nJJ) species are determined. Structures, vibrational frequencies, moments of inertia, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level of theory. Standard enthalpies of formation in the gas phase for the TCD-H2 m-n parent and radical species are determined using the B3LYP density functional theory and the higher level G3MP2B3 and CBS-QB3 composite methods. For singlet and triplet TCD diradicals and carbenes, M06-2X, ωB97X-D, and CCSD(T) methods are included in the analysis to determine ΔH°f298 values. The C-C BDEs are further calculated using CASMP2(2,2)/aug-cc-pvtz//CASSCF(2,2)/cc-pvtz and with the CASMP2 energies extrapolated to the complete basis set limit. The bond energies calculated with these methods are shown to be comparable to the other calculation methods. Isodesmic work reactions are used for enthalpy analysis of these compounds for effective cancelation of systematic errors arising from ring strain. C-C BDEs range from 77.4 to 84.6 kcal mol(-1) for TCD diradical singlet species. C-H BDEs for the parent TCD-H2 m-n carbon sites range from 93 to 101 kcal mol(-1) with a similar range seen for loss of the second hydrogen to generate the diradical singlet species. A wider range for C-C BDEs is seen for the carbenes from about 77 to 100 kcal mol(-1) as compared to the diradicals. Results from the DFT methods for the parents, radicals, diradicals, and carbenes are in good agreement with results from the composite methods using our sets of work reactions.

15.
J Phys Chem A ; 119(29): 8202-15, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26066097

ABSTRACT

Enthalpies of formation for 14 C2­C4 fluorinated hydrocarbons were calculated with nine popular ab initio and density functional theory methods: B3LYP, CBS-QB3, CBS-APNO, M06, M06-2X, ωB97X, G4, G4(MP2)-6X, and W1U via several series of isodesmic reactions. The recommended ideal gas phase ΔHf298° (kcal mol(­1)) values calculated in this study are the following: −65.4 for CH3CH2F; −70.2 for CH3CH2CH2F; −75.3 for CH3CHFCH3; −75.2 for CH3CH2CH2CH2F; −80.3 for CH3CHFCH2CH3; −108.1 for CH2F2; −120.9 for CH3CHF2; −125.8 for CH3CH2CHF2; −133.3 for CH3CF2CH3; −166.7 for CHF3; −180.5 for CH3CF3; −185.5 for CH3CH2CF3; −223.2 for CF4; and −85.8 for (CH3)3CF. Entropies (S298° in cal mol(­1) K(­1)) were estimated using B3LYP/6-31+G(d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S298°, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curve. Thermochemical properties for the fluorinated carbon groups C/C/F/H2, C/C2/F/H, C/C/F2/H, C/C2/F2, and C/C/F3 were derived from the above target fluorocarbons. Previously published enthalpies and groups for 1,2-difluoroethane, 1,1,2-trifluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2-pentafluoroethane, 2-fluoro-2-methylpropane that were previously determined via work reaction schemes are revised using updated reference species values. Standard deviations are compared for the calculation methods.

16.
J Phys Chem A ; 118(40): 9364-79, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25180943

ABSTRACT

Standard enthalpies of formation (ΔH°f 298) of methyl, ethyl, primary and secondary propyl, and n-butyl radicals are evaluated and used in work reactions to determine internal consistency. They are then used to calculate the enthalpy of formation for the tert-butyl radical. Other thermochemical properties including standard entropies (S°(T)), heat capacities (Cp(T)), and carbon-hydrogen bond dissociation energies (C-H BDEs) are reported for n-pentane, n-heptane, 2-methylhexane, 2,3-dimethylpentane, and several branched higher carbon number alkanes and their radicals. ΔH°f 298 and C-H BDEs are calculated using isodesmic work reactions at the B3LYP (6-31G(d,p) and 6-311G(2d,2p) basis sets), CBS-QB3, CBS-APNO, and G3MP2B3 levels of theory. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level for contributions to entropy and heat capacities. Enthalpy calculations for these hydrocarbon radical species are shown to have consistency with the CBS-QB3 and CBS-APNO methods using all work reactions. Our recommended ideal gas phase ΔH°f 298 values are from the average of all CBS-QB3, CBS-APNO, and for G3MP2B3, only where the reference and target radical are identical types, and are compared with literature values. Calculated values show agreement between the composite calculation methods and the different work reactions. Secondary and tertiary C-H bonds in the more highly branched alkanes are shown to have bond energies that are several kcal mol(-1) lower than the BDEs in corresponding smaller molecules often used as reference species. Entropies and heat capacities are calculated and compared to literature values (when available) when all internal rotors are considered.

17.
J Phys Chem A ; 118(26): 4631-46, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24894154

ABSTRACT

Thermochemical properties of tert-isooctane hydroperoxide and its radicals are determined by computational chemistry. Enthalpies are determined using isodesmic reactions with B3LYP density function and CBS QB3 methods. Application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities are determined using geometric parameters and frequencies from the B3LYP/6-31G(d,p) calculations for the lowest energy conformer. Internal rotor potentials are determined for the tert-isooctane hydroperoxide and its radicals in order to identify isomer energies. Recommended values derived from the most stable conformers of tert-isooctane hydroperoxide of are -77.85 ± 0.44 kcal mol(-1). Isooctane is a highly branched molecule, and its structure has a significant effect on its thermochemistry and reaction barriers. Intramolecular interactions are shown to have a significant effect on the enthalpy of the isooctane parent and its radicals on peroxy/peroxide systems, the R• + O2 well depths and unimolecular reaction barriers. Bond dissociation energies and well depths, for tert-isooctane hydroperoxide → R• + O2 are 33.5 kcal mol(-1) compared to values of ∼38 to 40 kcal mol(-1) for the smaller tert-butyl-O2 → R• + O2. Transition states and kinetic parameters for intramolecular hydrogen atom transfer and molecular elimination channels are characterized to evaluate reaction paths and kinetics. Kinetic parameters are determined versus pressure and temperature for the chemically activated formation and unimolecular dissociation of the peroxide adducts. Multifrequency quantum RRK (QRRK) analysis is used for k(E) with master equation analysis for falloff. The major reaction paths at 1000 K are formation of isooctane plus HO2 followed by cyclic ether plus OH. Stabilization of the tert-isooctane hydroperoxy radical becomes important at lower temperatures.

18.
J Phys Chem A ; 118(17): 3147-67, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24660891

ABSTRACT

The formation of cyclic ethers is a major product in the oxidation of hydrocarbons, and the oxidation of biomass derived alcohols. Cyclic ethers are formed in the initial reactions of alkyl radicals with dioxygen in combustion and precombustion processes that occur at moderate temperatures. They represent a significant part of the oxygenated pollutants found in the exhaust gases of engines. Cyclic ethers can also be formed from atmospheric reactions of olefins. Additionally, cyclic ethers have been linked to the formation of the secondary organic aerosol (SOA) in the atmosphere. In combustion and thermal oxidation processes these cyclic ethers will form radicals that react with (3)O2 to form peroxy radicals. Density functional theory and higher level ab initio calculations are used to calculate thermochemical properties and bond dissociation enthalpies of 3 to 5 member ring cyclic ethers (oxirane, yC2O, oxetane, yC3O, and oxolane, yC4O), corresponding hydroperoxides, alcohols, hydroperoxy alkyl, and alkyl radicals which are formed in these oxidation reaction systems. Trends in carbon-hydrogen bond dissociation energies for the ring and hydroperoxide group relative to ring size and to distance from the ether group are determined. Bond dissociation energies are calculated for use in understanding effects of the ether oxygen in the cyclic ethers, their stability, and kinetic properties. Geometries, vibration frequencies, and enthalpies of formation, ΔH°f,298, are calculated at the B3LYP/6-31G(d,p), B3LYP/6-31G(2d,2p), the composite CBS-QB3, and G3MP2B3 methods. Entropy and heat capacities, S°(T) and Cp°(T) (5 K ≤ T ≤ 5000), are determined using geometric parameters and frequencies from the B3LYP/6-31G(d,p) calculations. The strong effects of ring strain on the bond dissociation energies in these peroxy systems are also of fundamental interest. Oxetane and oxolane exhibit a significant stabilization, 10 kcal mol(-1), lower ΔfH°298 when an oxygen group is on the ether carbon relative to the isomer with the oxygen group on a secondary carbon. Relative to alkane systems the ether oxygen decreases bond dissociation energies (BDEs) on carbon sites adjacent to the ether by ∼5 kcal mol(-1), and increases BDEs on nonether carbons ∼1 kcal mol(-1). The cyclic structures have significant effects on the C-H, CO-OH, COO-H, and CO-H bond dissociation enthalpies. These values can be used to help calibrate calculations of larger more complex bicyclic and tricyclic hydrocarbon and ether species.

19.
J Phys Chem A ; 118(16): 2959-75, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24661061

ABSTRACT

Emissions of gaseous mercury from combustion sources are the major source of Hg in the atmosphere and in environmental waters and soils. Reactions of Hg(o)(g) with halogens are of interest because they relate to mercury and ozone depletion events in the Antarctic and Arctic early spring ozone hole events, and the formation of Hg-halides (HgX2) is a method for removal of mercury from power generation systems. Thermochemistry and kinetics from published theoretical and experimental studies in the literature and from computational chemistry are utilized to compile a mechanism of the reactions considered as contributors to the formation of HgX2 (X = Cl, Br, I) to understand the reaction paths and mechanisms under atmospheric conditions. Elementary reaction mechanisms are assembled and evaluated using thermochemistry for all species and microscopic reversibility for all reactions. Temperature and pressure dependence is determined with quantum Rice Ramsperger Kassel (RRK) analysis for k(E) and master equation analysis for fall-off. We find that reactions of mercury with a small fraction of the reactor surface or initiation by low concentrations of halogen atoms is needed to explain the experimental conversion of Hg to HgX2 in the gas phase. The models do not replicate data from experiments that do not explicitly provide an atom source. The Hg insertion reaction into X2 (Hg + X2 → HgX2) that has been reported is further studied, and we find agreement with studies that report high barriers. The high barriers prevent this insertion path from explaining the experimental data on HgX2 formation and Hg conversion under atmospheric conditions. Mechanism studies with low initial concentrations of halogen radicals show significant conversion of Hg under the experimental conditions.

20.
J Phys Chem A ; 117(2): 378-92, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23194387

ABSTRACT

Cyclic ethers are an important product from the gas-phase reactions of hydrocarbon radicals with molecular oxygen in the atmospheric chemistry of diolefins and in low to moderate temperature combustion and oxidation reaction systems. They are also important in organic synthesis. Structures, and fundamental thermochemical parameters-enthalpy (ΔH°(f,298)), entropy (S°(298)), and heat capacity (C(p)(T))-have been calculated for a series of cyclic alkyl ethers and their carbon centered radicals. Enthalpies of formation (ΔH°(f,298)) are determined at the B3LYP/6-31G(d,p), B3LYP/6-31G(2d,2p), and CBS-QB3 levels using several work reactions for each species. Entropy (S) and heat capacity (C(p)(T)) values from vibration, translational, and external rotational contributions are calculated using the rigid-rotor-harmonic-oscillator approximation based on the vibration frequencies and structures obtained from the density functional studies. Contributions from the internal methyl rotors are substituted for torsion frequencies. Calculated enthalpies of formation for a series of 12 cyclic ethers and methyl substituted cyclic ethers are in good agreement with available literature values. C-H bond dissociation enthalpies are reported for 28 carbon sites of 3 to 5 member ring cyclic ethers for use in understanding effects of the ring and the ether oxygen on kinetics and stability. Trends in carbon-hydrogen bond energies for the ring and methyl substituents relative to ring size and to distance from the ether group are described.

SELECTION OF CITATIONS
SEARCH DETAIL
...