Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 688, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959798

ABSTRACT

The climate varies due to human activity, natural climate cycles, and natural events external to the climate system. Understanding the different roles played by these drivers of variability is fundamental to predicting near-term climate change and changing extremes, and to attributing observed change to anthropogenic or natural factors. Natural drivers such as large explosive volcanic eruptions or multidecadal cycles in ocean circulation occur infrequently and are therefore poorly represented within the observational record. Here we turn to the first high-latitude annually-resolved and absolutely dated marine record spanning the last millennium, and the Paleoclimate Modelling Intercomparison Project (PMIP) Phase 3 Last Millennium climate model ensemble spanning the same time period, to examine the influence of natural climate drivers on Arctic sea ice. We show that bivalve oxygen isotope data are recording multidecadal Arctic sea ice variability and through the climate model ensemble demonstrate that external natural drivers explain up to third of this variability. Natural external forcing causes changes in sea-ice mediated export of freshwater into areas of active deep convection, affecting the strength of the Atlantic Meridional Overturning Circulation (AMOC) and thereby northward heat transport to the Arctic. This in turn leads to sustained anomalies in sea ice extent. The models capture these positive feedbacks, giving us improved confidence in their ability to simulate future sea ice in in a rapidly evolving Arctic.

2.
J Adv Model Earth Syst ; 8(1): 196-211, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27668040

ABSTRACT

A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot ). The way τtot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...