Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Phys ; 50(1): 55-69, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38240860

ABSTRACT

Melanoma is one of the most severe cancers due to its great potential to form metastasis. Recent studies showed the importance of mechanical property assessment in metastasis formation which depends on the cytoskeleton dynamics and cell migration. Although cells are considered purely elastic, they are viscoelastic entities. Microrheology atomic force microscopy (AFM) enables the assessment of elasticity and viscous properties, which are relevant to cell behavior regulation. The current work compares the mechanical properties of human neonatal primary melanocytes (HNPMs) with two melanoma cell lines (WM793B and 1205LU cells), using microrheology AFM. Immunocytochemistry of F-actin filaments and phosphorylated focal adhesion kinase (p-FAK) and cell migration assays were performed to understand the differences found in microrheology AFM regarding the tumor cell lines tested. AFM revealed that HNPMs and tumor cell lines had distinct mechanical properties. HNPMs were softer, less viscous, presenting a higher power-law than melanoma cells. Immunostaining showed that metastatic 1205LU cells expressed more p-FAK than WM793B cells. Melanoma cell migration assays showed that WM73B did not close the gap, in contrast to 1205LU cells, which closed the gap at the end of 23 h. These data seem to corroborate the high migratory behavior of 1205LU cells. Microrheology AFM applied to HNPMs and melanoma cells allowed the quantification of elasticity, viscous properties, glassy phase, and power-law properties, which have an impact in cell migration and metastasis formation. AFM study is important since it can be used as a biomarker of the different stages of the disease in melanoma.


Subject(s)
Melanoma , Infant, Newborn , Humans , Melanoma/pathology , Microscopy, Atomic Force , Elasticity , Cell Line, Tumor , Cytoskeleton
2.
Cancers (Basel) ; 14(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36291838

ABSTRACT

Colorectal cancer (CRC) has been addressed in the framework of molecular, cellular biology, and biochemical traits. A new approach to studying CRC is focused on the relationship between biochemical pathways and biophysical cues, which may contribute to disease understanding and therapy development. Herein, we investigated the mechanical properties of CRC cells, namely, HCT116, HCT15, and SW620, using static and dynamic methodologies by atomic force microscopy (AFM). The static method quantifies Young's modulus; the dynamic method allows the determination of elasticity, viscosity, and fluidity. AFM results were correlated with confocal laser scanning microscopy and cell migration assay data. The SW620 metastatic cells presented the highest Young's and storage moduli, with a defined cortical actin ring with distributed F-actin filaments, scarce vinculin expression, abundant total focal adhesions (FAK), and no filopodia formation, which could explain the lessened migratory behavior. In contrast, HCT15 cells presented lower Young's and storage moduli, high cortical tubulin, less cortical F-actin and less FAK, and more filopodia formation, probably explaining the higher migratory behavior. HCT116 cells presented Young's and storage moduli values in between the other cell lines, high cortical F-actin expression, intermediate levels of total FAK, and abundant filopodia formation, possibly explaining the highest migratory behavior.

3.
Cancer Res ; 80(11): 2407-2420, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32217696

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) has been associated with cancer cell heterogeneity, plasticity, and metastasis. However, the extrinsic signals supervising these phenotypic transitions remain elusive. To assess how selected microenvironmental signals control cancer-associated phenotypes along the EMT continuum, we defined a logical model of the EMT cellular network that yields qualitative degrees of cell adhesions by adherens junctions and focal adhesions, two features affected during EMT. The model attractors recovered epithelial, mesenchymal, and hybrid phenotypes. Simulations showed that hybrid phenotypes may arise through independent molecular paths involving stringent extrinsic signals. Of particular interest, model predictions and their experimental validations indicated that: (i) stiffening of the extracellular matrix was a prerequisite for cells overactivating FAK_SRC to upregulate SNAIL and acquire a mesenchymal phenotype and (ii) FAK_SRC inhibition of cell-cell contacts through the receptor-type tyrosine-protein phosphatases kappa led to acquisition of a full mesenchymal, rather than a hybrid, phenotype. Altogether, these computational and experimental approaches allow assessment of critical microenvironmental signals controlling hybrid EMT phenotypes and indicate that EMT involves multiple molecular programs. SIGNIFICANCE: A multidisciplinary study sheds light on microenvironmental signals controlling cancer cell plasticity along EMT and suggests that hybrid and mesenchymal phenotypes arise through independent molecular paths.


Subject(s)
Epithelial-Mesenchymal Transition , Models, Biological , Neoplasms/pathology , Tumor Microenvironment , Animals , Cell Adhesion , Cell Line, Tumor , Computer Simulation , Dogs , Humans , Madin Darby Canine Kidney Cells , Phenotype
4.
Front Cell Dev Biol ; 8: 54, 2020.
Article in English | MEDLINE | ID: mdl-32117980

ABSTRACT

Skin is the largest organ of the human body with several important functions that can be impaired by injury, genetic or chronic diseases. Among all skin diseases, melanoma is one of the most severe, which can lead to death, due to metastization. Mechanotransduction has a crucial role for motility, invasion, adhesion and metastization processes, since it deals with the response of cells to physical forces. Signaling pathways are important to understand how physical cues produced or mediated by the Extracellular Matrix (ECM), affect healthy and tumor cells. During these processes, several molecules in the nucleus and cytoplasm are activated. Melanocytes, keratinocytes, fibroblasts and the ECM, play a crucial role in melanoma formation. This manuscript will address the synergy among melanocytes, keratinocytes, fibroblasts cells and the ECM considering their mechanical contribution and relevance in this disease. Mechanical properties of melanoma cells can also be influenced by pigmentation, which can be associated with changes in stiffness. Mechanical changes can be related with the adhesion, migration, or invasiveness potential of melanoma cells promoting a high metastization capacity of this cancer. Mechanosensing, mechanotransduction, and mechanoresponse will be highlighted with respect to the motility, invasion, adhesion and metastization in melanoma cancer.

5.
ACS Appl Mater Interfaces ; 8(21): 13207-17, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27144779

ABSTRACT

Proteins that get adsorbed onto the surfaces of biomaterials immediately upon their implantation mediate the interactions between the material and the environment. This process, in which proteins in a complex mixture compete for adsorption sites on the surface, is determined by the physicochemical interactions at the interface. Competitive adsorption of bovine serum albumin (BSA), fibronectin (Fn), and collagen type I (Col I), sequentially and from mixtures, was investigated so as to understand the performances of different surfaces used in biomedical applications. A quartz crystal microbalance with dissipation was used to monitor the adsorption of these proteins onto two materials used in functional bone replacement, a titanium alloy (Ti6Al4V) and Ti6Al4V physisorbed with poly(sodium styrenesulfonate) [poly(NaSS)], and three controls, gold, poly(desaminotyrosyltyrosine ethyl ester carbonate) [poly(DTEc)], and polystyrene (PS). In experiments with individual proteins, the adsorption was the highest with Fn and Col I and the least with BSA. Also, protein adsorption was the highest on poly(NaSS) and Ti6Al4V and the least on poly(DTEc). In sequential adsorption experiments, protein exchange was observed in BSA + Fn, Fn + Col I, and BSA + Col I sequences but not in Fn + BSA and Col I + BSA because of the lower affinity of BSA to surfaces relative to Fn and Col I. Protein adsorption was the highest with Col I + Fn on hydrophobic surfaces. In experiments with protein mixtures, with BSA & Fn, Fn appears to be preferentially adsorbed; with Fn & Col I, both proteins were adsorbed, probably as multilayers; and with Col I & BSA, the total amount of protein was the highest, greater than that in sequential and individual adsorption of the two proteins, probably because of the formation of BSA and Col I complexes. Protein conformational changes induced by the adsorbing surfaces, protein-protein interactions, and affinities of proteins appear to be the important factors that govern competitive adsorption. The findings reported here will be useful in understanding the host response to surfaces used for implants.


Subject(s)
Blood Proteins/metabolism , Quartz Crystal Microbalance Techniques , Adsorption , Biocompatible Materials/metabolism , Bone Substitutes/metabolism , Gold/chemistry , Gold/metabolism , Polystyrenes/chemistry , Polystyrenes/metabolism , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Surface Properties
6.
Langmuir ; 23(13): 7046-54, 2007 Jun 19.
Article in English | MEDLINE | ID: mdl-17508764

ABSTRACT

In the present work we analyze the dynamics of fibronectin (FN) adsorption on two different stable titanium oxides, with varied surface roughness, and chemically similar to those used in clinical practice. The two types of titanium oxide surfaces used were TiO2 sputtered on Si (TiO2 sp) and TiO2 formed on commercially pure titanium after immersion in H2O2 (TiO2 cp). Surface characterization was previously carried out using different techniques (Sousa, S. R.; Moradas-Ferreira, P.; Melo, L. V.; Saramago, B.; Barbosa, M. A. Langmuir 2004, 20 (22), 9745-9754). Imaging and roughness analysis before and after FN adsorption used atomic force microscopy (AFM) in tapping mode, in air, and in magnetic alternating current mode, in liquid (water). FN adsorption as a function of time was followed by X-ray photoelectron spectroscopy (XPS), by radiolabeling of FN with 125I (125I-FN), and by ellipsometry. Exchangeability studies were performed using FN and HSA. AFM roughness analysis revealed that, before FN adsorption, both TiO2 surfaces exhibited a lower root-mean-square (Rq) and maximum peak with the depth of the maximum valley (Rmax) roughness in air than in water, due to TiO2 hydration. After protein adsorption, the same behavior was observed for the TiO2 sp substrate, while Rq and Rmax roughness values in air and in water were similar in the case of the TiO2 cp substrate, for the higher FN concentration used. Surface roughness was always significantly higher on the TiO2 cp surfaces. AFM led to direct visualization of adsorbed FN on both surfaces tested, indicating that after 10 min of FN incubation the TiO2 sp surface was partially covered by FN. The adsorbed protein seems to form globular aggregates or ellipsoids, and FN aggregates coalesce, forming clusters as the time of adsorption and the concentration increase. Radiolabeling of FN revealed that a rapid adsorption occurs on both surfaces and the amount adsorbed increased with time, reaching a maximum after 60 min of incubation. Time dependence is also observed for the evolution of the atomic (%) of N determined by XPS and by the increase of the thickness by ellipsometry. TiO2 cp adsorbs more FN than the TiO2 sp surfaces, after 60 min of adsorption, as shown by the radiolabeling data. FN molecules are also more strongly attached to the former surface as indicated by the exchangeability studies. The overall results provide novel evidence that FN spontaneously adsorbs as a self-assembly at TiO2 surfaces as a function of time. The aggregate structure is an intermediate feature shared by some protein fibrillar assemblies at interfaces, which is believed to promote cell adhesion and cytoskeleton organization (Pellenc, D.; Berry, H.; Gallet, O. J. Colloid Interface Sci. 2006, 298 (1), 132-144. Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A.; Griffith, L. G. J. Cell Sci. 2000, 113 (10), 1677-1686).


Subject(s)
Fibronectins/chemistry , Titanium/chemistry , Adsorption , Humans , Microscopy, Atomic Force , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...