Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB Bioadv ; 2(1): 18-32, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32123854

ABSTRACT

To assess complex social recognition in mice, we previously developed the SocioBox paradigm. Unexpectedly, 4 weeks after performing in the SocioBox, mice displayed robust social avoidance during Y-maze sociability testing. This unique "sociophobia" acquisition could be documented in independent cohorts. We therefore employed infrared thermography as a non-invasive method of stress-monitoring during SocioBox testing (presentation of five other mice) versus empty box. A higher Centralization Index (body/tail temperature) in the SocioBox correlated negatively with social recognition memory and, after 4 weeks, with social preference in the Y-maze. Assuming that social stimuli might be associated with characteristic thermo-responses, we exposed healthy men (N = 103) with a comparably high intelligence level to a standardized test session including two cognitive tests with or without social component (face versus pattern recognition). In some analogy to the Centralization Index (within-subject measure) used in mice, the Reference Index (ratio nose/malar cheek temperature) was introduced to determine the autonomic facial response/flushing during social recognition testing. Whereas cognitive performance and salivary cortisol were comparable across human subjects and tests, the Face Recognition Test was associated with a characteristic Reference Index profile. Infrared thermography may have potential for discriminating disturbed social behaviors.

2.
J Neurosci Methods ; 257: 194-203, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26432934

ABSTRACT

BACKGROUND: Multi-electrode arrays (MEAs) allow non-invasive multi-unit recording in-vitro from cultured neuronal networks. For sufficient neuronal growth and adhesion on such MEAs, substrate preparation is required. Plating of dissociated neurons on a uniformly prepared MEA's surface results in the formation of spatially extended random networks with substantial inter-sample variability. Such cultures are not optimally suited to study the relationship between defined structure and dynamics in neuronal networks. To overcome these shortcomings, neurons can be cultured with pre-defined topology by spatially structured surface modification. Spatially structuring a MEA surface accurately and reproducibly with the equipment of a typical cell-culture laboratory is challenging. NEW METHOD: In this paper, we present a novel approach utilizing micro-contact printing (µCP) combined with a custom-made device to accurately position patterns on MEAs with high precision. We call this technique AP-µCP (accurate positioning micro-contact printing). COMPARISON WITH EXISTING METHODS: Other approaches presented in the literature using µCP for patterning either relied on facilities or techniques not readily available in a standard cell culture laboratory, or they did not specify means of precise pattern positioning. CONCLUSION: Here we present a relatively simple device for reproducible and precise patterning in a standard cell-culture laboratory setting. The patterned neuronal islands on MEAs provide a basis for high throughput electrophysiology to study the dynamics of single neurons and neuronal networks.


Subject(s)
Cell Culture Techniques/instrumentation , Microelectrodes , Microtechnology/instrumentation , Neurons/physiology , Printing/instrumentation , Action Potentials , Animals , Astrocytes/physiology , Cell Adhesion , Cell Count , Cell Culture Techniques/methods , Equipment Design , Hippocampus/cytology , Hippocampus/physiology , Immunohistochemistry , Microscopy, Electron, Scanning , Microscopy, Phase-Contrast , Microtechnology/methods , Neurons/cytology , Printing/methods , Rats , Reproducibility of Results , Surface Properties
3.
Front Neural Circuits ; 7: 167, 2013.
Article in English | MEDLINE | ID: mdl-24155695

ABSTRACT

Synchronized bursting is found in many brain areas and has also been implicated in the pathophysiology of neuropsychiatric disorders such as epilepsy, Parkinson's disease, and schizophrenia. Despite extensive studies of network burst synchronization, it is insufficiently understood how this type of network wide synchronization can be strengthened, reduced, or even abolished. We combined electrical recording using multi-electrode array with optical stimulation of cultured channelrhodopsin-2 transducted hippocampal neurons to study and manipulate network burst synchronization. We found low frequency photo-stimulation protocols that are sufficient to induce potentiation of network bursting, modifying bursting dynamics, and increasing interneuronal synchronization. Surprisingly, slowly fading-in light stimulation, which substantially delayed and reduced light-driven spiking, was at least as effective in reorganizing network dynamics as much stronger pulsed light stimulation. Our study shows that mild stimulation protocols that do not enforce particular activity patterns onto the network can be highly effective inducers of network-level plasticity.


Subject(s)
Action Potentials/physiology , Hippocampus/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Models, Neurological , Optogenetics , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...