Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
J Affect Disord ; 367: 109-117, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187195

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment in major depressive disorder (MDD). However, intermittent theta-burst stimulation (iTBS) and rTMS protocols using 10 Hz stimulation frequency might differ in their effect on neuroplasticity and on clinical symptoms. This study compares the effect of iTBS and a novel 10 Hz-rTMS with shortened single session duration, on motor excitability and neuroplasticity and on clinical symptoms in MDD. METHODS: 30 patients with MDD received either iTBS or the novel 10 Hz-rTMS daily over three weeks to the left dorsolateral prefrontal cortex. Before and after the interventions, motor excitability, short-latency intracortical inhibition and long-term-potentiation-like plasticity in the motor cortex and clinical symptoms were measured by use of transcranial magnetic stimulation. RESULTS: After the intervention, the level of neuroplasticity increased and clinical symptoms of depression were reduced in both groups, though both effects were significantly stronger after the novel 10 Hz-rTMS. Importantly, the changes in neuroplasticity and clinical symptoms were correlated: the stronger neuroplasticity increased, the stronger was the improvement of clinical symptoms. LIMITATIONS: Short intervention period of 3 weeks. Clinical symptoms were measured by self-assessment only and are therefore preliminary. CONCLUSIONS: The novel 10 Hz-rTMS is more effective in increasing neuroplasticity in MDD and potentially also in reducing clinical symptoms than iTBS. This might be due to a differential mode of action on neuroplasticity and to the stimulation frequency of 10 Hz (within the alpha range) being more suitable to reset the brain's activity and to support neuroplastic changes.

2.
Front Psychiatry ; 12: 660642, 2021.
Article in English | MEDLINE | ID: mdl-34177647

ABSTRACT

Major depressive disorder (MDD) is the most common mental disorder and deficits in neuroplasticity are discussed as one pathophysiological mechanism. Physical activity (PA) enhances neuroplasticity in healthy subjects and improves clinical symptoms of MDD. However, it is unclear whether this clinical effect of PA is due to restoring deficient neuroplasticity in MDD. We investigated the effect of a 3-week PA program applied on clinical symptoms, motor excitability and plasticity, and on cognition in patients with MDD (N = 23), in comparison to a control intervention (CI; N = 18). Before and after the interventions, the clinical symptom severity was tested using self- (BDI-II) and investigator- (HAMD-17) rated scales, transcranial magnetic stimulation (TMS) protocols were used to test motor excitability and paired-associative stimulation (PAS) to test long-term-potentiation (LTP)-like plasticity. Additionally, cognitive functions such as attention, working memory and executive functions were tested. After the interventions, the BDI-II and HAMD-17 decreased significantly in both groups, but the decrease in HAMD-17 was significantly stronger in the PA group. Cognition did not change notably in either group. Motor excitability did not differ between the groups and remained unchanged by either intervention. Baseline levels of LTP-like plasticity in the motor cortex were low in both groups (PA: 113.40 ± 2.55%; CI: 116.83 ± 3.70%) and increased significantly after PA (155.06 ± 10.48%) but not after CI (122.01 ± 4.1%). Higher baseline BDI-II scores were correlated with lower levels of neuroplasticity. Importantly, the more the BDI-II score decreased during the interventions, the stronger did neuroplasticity increase. The latter effect was particularly strong after PA (r = -0.835; p < 0.001). The level of neuroplasticity related specifically to the psychological/affective items, which are tested predominantly in the BDI-II. However, the significant clinical difference in the intervention effects was shown in the HAMD-17 which focuses more on somatic/neurovegetative items known to improve earlier in the course of MDD. In summary, PA improved symptoms of MDD and restored the deficient neuroplasticity. Importantly, both changes were strongly related on the individual patients' level, highlighting the key role of neuroplasticity in the pathophysiology and the clinical relevance of neuroplasticity-enhancing interventions for the treatment of MDD.

3.
Exp Brain Res ; 238(12): 2805-2818, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33025030

ABSTRACT

Intervention-induced neuroplastic changes within the motor or cognitive system have been shown in the human brain. While cognitive and motor brain areas are densely interconnected, it is unclear whether this interconnectivity allows for a shared susceptibility to neuroplastic changes. Using the preparation for a theoretical exam as training intervention that primarily engages the cognitive system, we tested the hypothesis whether neuroplasticity acts across interconnected brain areas by investigating the effect on excitability and synaptic plasticity in the motor cortex. 39 healthy students (23 female) underwent 4 weeks of cognitive training while revision time, physical activity, concentration, fatigue, sleep quality and stress were monitored. Before and after cognitive training, cognitive performance was evaluated, as well as motor excitability using transcranial magnetic stimulation and long-term-potentiation-like (LTP-like) plasticity using paired-associative-stimulation (PAS). Cognitive training ranged individually from 1 to 7 h/day and enhanced attention and verbal working memory. While motor excitability did not change, LTP-like plasticity increased in an intensity-depending manner: the longer the daily revision time, the smaller the increase of neuroplasticity, and vice versa. This effect was not influenced by physical activity, concentration, fatigue, sleep quality or stress. Motor cortical plasticity is strengthened by a behavioural intervention that primarily engages cognitive brain areas. We suggest that this effect is due to an enhanced susceptibility to LTP-like plasticity, probably induced by heterosynaptic activity that modulates postsynaptic excitability in motorcortical neurones. The smaller increase of PAS efficiency with higher cognitive training intensity suggests a mechanism that balances and stabilises the susceptibility for synaptic potentiation.


Subject(s)
Motor Cortex , Cognition , Electric Stimulation , Electromyography , Evoked Potentials, Motor , Female , Humans , Long-Term Potentiation , Neuronal Plasticity , Transcranial Magnetic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL